
Yashwantrao Chavan Academy of Development Administration
Rajbhavan Complex, Baner Road, PUNE - 411 007, Maharashtra State, India

Course Material for

(For free internal distribution only. Not for sale or resale)

Advanced Microsoft Excel 2010

About this Course Material

Course Prerequisites

When you return to your home or office, you will find this book to be a valuable
resource for reviewing exercises and applying the skills you have learned. Each
lesson concludes with review questions that review whatever you have learnt from
the lesson. Lesson review questions are provided as a study resource only.
They do not guarantee a passing score on any certification exam(s).

This course material is developed for Microsoft Excel 2010 training and will
teach y o u the subject step-by-step. With comprehensive instructions and
objectives checklists, it provides easy-to-follow hands-on exercises and a
glossary of Excel-specific terms.

This Course Material is designed for participants who possess Intermediate Level
 knowledge in Microsoft Excel 2010.

The document by no means has any commercial intention and is solely compiled for the
purpose of knowledge sharing. It is meant for free of cost distribution amongst participants of
YASHADA’s training programs.

The aim of this course material is to provide a preliminary understanding on the subjects and
 areas covered as part of YASHADA's training programs. While working on Microsoft Excel, this
document should be treated only as a quick reference on the topics, and should not be treated as a
guideline and / or instructions.

The content provided herein is subject to change without prior notice.

Acknowledgements and Disclaimer

This course material is a compilation of internal knowledge base and content from various
sources, websites, booklets, documents, etc. Same goes with various screen shots used in it,
and the accompanying exercise files. Most of the content and exercises have been taken from
websites like microsoft.com, excelexperts.com, excel-formulas.com, gcflearnfree.org, and
homeandlearn.co.uk. Yashwantrao Chavan Academy of Development Administration
(YASHADA) duly and thankfully acknowledges these sources.

YASHADA shall have no liability for errors, omissions or inadequacies in the
information contained herein or for interpretation thereof. The reader is solely responsible for the
selection of this material to achieve its intended results.

10 Userforms—An Introduction

11 Creating Charts

12 Data Mining with Advanced Filter

13 Using VBA to Create Pivot Tables

14 Excel Power

15 Data Visualizations and Conditional Formatting

16 Reading from and Writing to the Web

17 Dashboarding with Sparklines in Excel 2010

18 Automating Word

19 Arrays

20 Text File Processing

21 Using Access as a Back End to Enhance Multiuser Access to Data

22 Creating Classes, Records, and Collections

23 Advanced Userform Techniques

24 Windows API

25 Handling Errors

26 Customizing the Ribbon to Run Macros

27 Creating Add-Ins

 Index

C o n t e n t s a t a G l a n c e

1 Unleash the Power of Excel with VBA

2 This Sounds Like BASIC, So Why Doesn’t It Look Familiar?

3 Referring to Ranges

4 User-Defined Functions

5 Looping and Flow Control

6 R1C1-Style Formulas

7 What Is New in Excel 2010 and What Has Changed

8 Create and Manipulate Names in VBA

9 Event Programming

Contents

1 Unleash the Power of Excel with VBA 7

The Power of Excel ...7

Barriers to Entry ..7

The Macro Recorder Doesn’t Work! ..7

Visual Basic Is Not Like BASIC ..8

Good News: Climbing the Learning Curve Is Easy ..8

Great News: Excel with VBA Is Worth the Effort8

Knowing Your Tools: The Developer Tab ..9

Macro Security ...10

Adding a Trusted Location ...10

Using Macro Settings to Enable Macros in Workbooks Outside of Trusted Locations ...11

Using Disable All Macros with Notification ..12

Overview of Recording, Storing, and Running a Macro ..12

Filling Out the Record Macro Dialog ..13

Running a Macro..14

Creating a Macro Button on the Ribbon ..14

Creating a Macro Button on the Quick Access Toolbar ...15

Assigning a Macro to a Form Control, Text Box, or Shape ..16

Using New File Types in Excel 2010 ...18

Understanding the VB Editor ...19

VB Editor Settings ..19

The Project Explorer ...20

The Properties Window ...21

Understanding Shortcomings of the Macro Recorder ..21

Examining Code in the Programming Window ...23

Running the Macro on Another Day Produces Undesired Results ..25

VBA and Macros: Microsoft Excel 2010iv

Possible Solution: Use Relative References When Recording ...26

Never Use the AutoSum Button While Recording a Macro ..30

Three Tips When Using the Macro Recorder ..31

2 This Sounds Like BASIC, So Why Doesn’t It Look Familiar? ...33

I Can’t Understand This Code ...33

Understanding the Parts of VBA “Speech” ...34

VBA Is Not Really Hard ...37

VBA Help Files: Using F1 to Find Anything ...37

Using Help Topics ..39

Examining Recorded Macro Code: Using the VB Editor and Help ...39

Optional Parameters ..41

Defined Constants ...41

Properties Can Return Objects ...46

Using Debugging Tools to Figure Out Recorded Code ..46

Stepping Through Code ...46

More Debugging Options: Breakpoints ..49

Backing Up or Moving Forward in Code ...49

Not Stepping Through Each Line of Code...50

Querying Anything While Stepping Through Code ..50

Using a Watch to Set a Breakpoint ..55

Using a Watch on an Object ...55

Object Browser: The Ultimate Reference ...56

Seven Tips for Cleaning Up Recorded Code ..58

Tip 1: Don’t Select Anything ..58

Tip 2: Cells(2,5) Is More Convenient Than Range(“E2”) ...59

Tip 3: Ride the Range from the Bottom to Find Last Row ..59

Tip 4: Use Variables to Avoid Hard-Coding Rows and Formulas ...60

Tip 5: R1C1 Formulas That Make Your Life Easier ..61

Tip 6: Learn to Copy and Paste in a Single Statement..61

Tip 7: Use With...End With to Perform Multiple Actions ..61

3 Referring to Ranges ...65

The Range Object ..65

Syntax to Specify a Range ..66

Named Ranges ...66

Shortcut for Referencing Ranges ...66

Referencing Ranges in Other Sheets ..67

Referencing a Range Relative to Another Range ...68

vContents

Use the Cells Property to Select a Range...68

Using the Cells Property in the Range Property ...69

Use the Offset Property to Refer to a Range ...69

Use the Resize Property to Change the Size of a Range ..71

Using the Columns and Rows Properties to Specify a Range ...72

Use the Union Method to Join Multiple Ranges ..72

Use the Intersect Method to Create a New Range from Overlapping Ranges ..73

Use the ISEMPTY Function to Check Whether a Cell Is Empty

4 User-Defined Functions ..79

Creating User-Defined Functions ...79

Sharing UDFs ...81

Useful Custom Excel Functions ...82

Set the Current Workbook’s Name in a Cell ...82

Set the Current Workbook’s Name and File Path in a Cell ..82

Check Whether a Workbook Is Open ..83

Check Whether a Sheet in an Open Workbook Exists ...83

Count the Number of Workbooks in a Directory ..84

Retrieve USERID ...85

Retrieve Date and Time of Last Save ..86

Retrieve Permanent Date and Time ...87

Validate an E-mail Address ..88

Sum Cells Based on Interior Color ..89

Count Unique Values ...90

Remove Duplicates from a Range ..91

Find the First Nonzero-Length Cell in a Range ...93

Substitute Multiple Characters ..94

Retrieve Numbers from Mixed Text ...95

Convert Week Number into Date ...96

Separate Delimited String ...96

Sort and Concatenate ..97

Sort Numeric and Alpha Characters ...99

Search for a String Within Text ..100

Reverse the Contents of a Cell ...101

Multiple Max ...101

Return Hyperlink Address ..102

Return the Column Letter of a Cell Address ...103

...73

Use the CurrentRegion Property to Select a Data Range ..74

Use the Areas Collection to Return a Noncontiguous Range ..77

Referencing Tables ..77

VBA and Macros: Microsoft Excel 2010vi

Static Random ...103

Using Select Case on a Worksheet ...104

For…Next Loops ..107

Using Variables in the For Statement ..110

Variations on the For...Next Loop ...110

Exiting a Loop Early After a Condition Is Met ...111

Nesting One Loop Inside Another Loop ...112

Do Loops ...113

Using the While or Until Clause in Do Loops ...115

While...Wend Loops ..117

VBA Loop: For Each ...117

Object Variables ...117

Flow Control: Using If...Then...Else and Select Case ..120

Basic Flow Control: If...Then...Else ..121

Conditions ...121

If...Then...End If ...121

Either/Or Decisions: If...Then...Else...End If ..122

Using If...Else If...End If for Multiple Conditions ...122

Using Select Case...End Select for Multiple Conditions ...123

Complex Expressions in Case Statements ...124

Nesting If Statements ...124

6 R1C1-Style Formulas ..127

Referring to Cells: A1 Versus R1C1 References ...127

Switching Excel to Display R1C1-Style References ...128

The Miracle of Excel Formulas ..129

Enter a Formula Once and Copy 1,000 Times ...129

The Secret: It’s Not That Amazing ..130

Explanation of R1C1 Reference Style ...132

Using R1C1 with Relative References...132

Using R1C1 with Absolute References ...133

Using R1C1 with Mixed References..133

Referring to Entire Columns or Rows with R1C1 Style ...134

Replacing Many A1 Formulas with a Single R1C1 Formula ..134

Remembering Column Numbers Associated with Column Letters

5 Looping and Flow Control ...107

...136

Array Formulas Require R1C1 Formulas ...137

viiContents

7 What Is New in Excel 2010 and What Has Changed ...139

If It Has Changed in the Front End, It Has Changed in VBA ..139

The Ribbon ..139

Charts ..139

Pivot Tables ...140

Slicers ..140

Conditional Formatting ...140

Tables ..141

Sorting ...141

SmartArt ..142

Learning the New Objects and Methods ..143

Compatibility Mode ...144

Version ...144

8 Create and Manipulate Names in VBA ...147

Excel Names ...147

Global Versus Local Names ..147

Adding Names ...148

Deleting Names ...149

Adding Comments ...150

Types of Names ..150

Formulas ..151

Strings ...151

Numbers ..152

Tables ..153

Using Arrays in Names ...153

Reserved Names ..154

9 Event Programming ...159

Levels of Events ...159

Using Events ..160

Event Parameters ..160

Enabling Events ...161

Workbook Events ...161

Workbook_Activate() ...161

Workbook_Deactivate() ..161

Excel8CompatibilityMode ...145

Hiding Names ..155

Checking for the Existence of a Name ..155

VBA and Macros: Microsoft Excel 2010viii

Workbook_Open() ...161

Workbook_BeforeSave(ByVal SaveAsUI As Boolean, Cancel As Boolean)162

Workbook_BeforePrint(Cancel As Boolean) ...163

Workbook_BeforeClose(Cancel As Boolean) ...163

Workbook_NewSheet(ByVal Sh As Object) ..164

Workbook_WindowResize(ByVal Wn As Window) ..164

Workbook_WindowActivate(ByVal Wn As Window) ...165

Workbook_WindowDeactivate(ByVal Wn As Window) ..165

Workbook_AddInInstall() ...165

Workbook_AddInUninstall ...165

Workbook_Sync(ByVal SyncEventType As Office.MsoSyncEventType)165

Workbook_PivotTableCloseConnection(ByVal Target As PivotTable)..............................165

Workbook_PivotTableOpenConnection(ByVal Target As PivotTable)165
Workbook_RowsetComplete(ByVal Description As String, ByVal Sheet As

String, ByVal Success As Boolean) ..165
Workbook_BeforeXmlExport(ByVal Map As XmlMap, ByVal Url As String,

Cancel As Boolean) ..166
Workbook_AfterXmlExport(ByVal Map As XmlMap, ByVal Url As String, ByVal

Result As XlXmlExportResult) ...166
Workbook_BeforeXmlImport(ByVal Map As XmlMap, ByVal Url As String, ByVal

IsRefresh As Boolean, Cancel As Boolean)...166
Workbook_AfterXmlImport(ByVal Map As XmlMap, ByVal IsRefresh As Boolean,

ByVal Result As XlXmlImportResult) ..166

Workbook Level Sheet and Chart Events ...166

Worksheet Events ..168

Worksheet_Activate()...168

Worksheet_Deactivate() ..168

Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As Boolean)168

Worksheet_BeforeRightClick(ByVal Target As Range, Cancel As Boolean)169

Worksheet_Calculate() ..169

Worksheet_Change(ByVal Target As Range) ...170

Worksheet_SelectionChange(ByVal Target As Range) ..170

Worksheet_FollowHyperlink(ByVal Target As Hyperlink) ..171

Worksheet_PivotTableUpdate(ByVal Target As PivotTable) ...172
Chart Sheet Events ...172

Embedded Charts ..172

Chart_Activate() ..173
Chart_BeforeDoubleClick(ByVal ElementID As Long, ByVal Arg1 As Long,

ByVal Arg2 As Long, Cancel As Boolean) ...173

Chart_BeforeRightClick(Cancel As Boolean) ..173

Chart_Calculate() ..173

Chart_Deactivate() ...173
Chart_MouseDown(ByVal Button As Long, ByVal Shift As Long, ByVal x As

Long, ByVal y As Long) ...174
Chart_MouseMove(ByVal Button As Long, ByVal Shift As Long, ByVal x As

Long, ByVal y As Long) ...174

ixContents

Chart_MouseUp(ByVal Button As Long, ByVal Shift As Long, ByVal x As

Long, ByVal y As Long) ...174

Chart_Resize() ...174
Chart_Select(ByVal ElementID As Long, ByVal Arg1 As Long, ByVal Arg2 As

Long) ...174

Chart_SeriesChange(ByVal SeriesIndex As Long, ByVal PointIndex As Long)175

Chart_DragOver() ..175

Chart_DragPlot() ..175

Application-Level Events ...176

AppEvent_AfterCalculate() ..176

AppEvent_NewWorkbook(ByVal Wb As Workbook) ...177

AppEvent_ProtectedViewWindowActivate(ByVal Pvw As ProtectedViewWindow)177
AppEvent_ProtectedViewWindowBeforeClose(ByVal Pvw As ProtectedViewWindow,

ByVal Reason As XlProtectedViewCloseReason, Cancel As Boolean)177

AppEvent_ProtectedViewWindowDeactivate(ByVal Pvw As ProtectedViewWindow)177

AppEvent_ProtectedViewWindowOpen(ByVal Pvw As ProtectedViewWindow)177

AppEvent_ProtectedViewWindowResize(ByVal Pvw As ProtectedViewWindow)177

AppEvent_SheetActivate (ByVal Sh As Object) ..177
AppEvent_SheetBeforeDoubleClick(ByVal Sh As Object, ByVal Target As

Range, Cancel As Boolean) ..178
AppEvent_SheetBeforeRightClick(ByVal Sh As Object, ByVal Target As

 Range, Cancel As Boolean)..178

AppEvent_SheetCalculate(ByVal Sh As Object) ...178

AppEvent_SheetChange(ByVal Sh As Object, ByVal Target As Range)178

AppEvent_SheetDeactivate(ByVal Sh As Object) ..178
AppEvent_SheetFollowHyperlink(ByVal Sh As Object, ByVal Target As

Hyperlink) ..178

AppEvent_SheetSelectionChange(ByVal Sh As Object, ByVal Target As Range)178
AppEvent_SheetPivotTableUpdate(ByVal Sh As Object, ByVal Target As

PivotTable) ..178

AppEvent_WindowActivate(ByVal Wb As Workbook, ByVal Wn As Window)179

AppEvent_WindowDeactivate(ByVal Wb As Workbook, ByVal Wn As Window)179

AppEvent_WindowResize(ByVal Wb As Workbook, ByVal Wn As Window)179

AppEvent_WorkbookActivate(ByVal Wb As Workbook) ...179

AppEvent_WorkbookAddinInstall(ByVal Wb As Workbook) ...179

AppEvent_WorkbookAddinUninstall(ByVal Wb As Workbook) ..179

AppEvent_WorkbookBeforeClose(ByVal Wb As Workbook, Cancel As Boolean)179

AppEvent_WorkbookBeforePrint(ByVal Wb As Workbook, Cancel As Boolean)180
AppEvent_WorkbookBeforeSave(ByVal Wb As Workbook, ByVal SaveAsUI As

Boolean, Cancel As Boolean) ...180

AppEvent_WorkbookNewSheet(ByVal Wb As Workbook, ByVal Sh As Object)180

AppEvent_WorkbookOpen(ByVal Wb As Workbook) ...180
AppEvent_WorkbookPivotTableCloseConnection(ByVal Wb As Workbook, ByVal

Target As PivotTable) ..180
AppEvent_WorkbookPivotTableOpenConnection(ByVal Wb As Workbook, ByVal

Target As PivotTable) ..180
AppEvent_WorkbookRowsetComplete(ByVal Wb As Workbook, ByVal Description

As String, ByVal Sheet As String, ByVal Success As Boolean)181

VBA and Macros: Microsoft Excel 2010x

AppEvent_WorkbookSync(ByVal Wb As Workbook, ByVal SyncEventType As

Office.MsoSyncEventType)..181
AppEvent_WorkbookBeforeXmlExport(ByVal Wb As Workbook, ByVal Map As

XmlMap, ByVal Url As String, Cancel As Boolean) ...181
AppEvent_WorkbookAfterXmlExport(ByVal Wb As Workbook, ByVal Map As

XmlMap, ByVal Url As String, ByVal Result As XlXmlExportResult)181
AppEvent_WorkbookBeforeXmlImport(ByVal Wb As Workbook, ByVal Map As XmlMap,

ByVal Url As String, ByVal IsRefresh As Boolean, Cancel As Boolean)181
AppEvent_WorkbookAfterXmlImport(ByVal Wb As Workbook, ByVal Map As

10 Userforms: An Introduction ..183

User Interaction Methods ..183

Input Boxes..183

Message Boxes ..184

Creating a Userform ...184

Calling and Hiding a Userform ...186

Programming the Userform ...186

Userform Events ..186

Programming Controls ..188

Using Basic Form Controls..189

Using Labels, Text Boxes, and Command Buttons ...189

Deciding Whether to Use List Boxes or Combo Boxes in Forms ...191

Adding Option Buttons to a Userform ...194

Adding Graphics to a Userform ..195

Using a Spin Button on a Userform ..196

Using the MultiPage Control to Combine Forms

11 Creating Charts ..203

Charting in Excel 2010 ...203

Referencing Charts and Chart Objects in VBA Code ..203

Creating a Chart ...204

Specifying the Size and Location of a Chart ...204

Later Referring to a Specific Chart ...206

Recording Commands from the Layout or Design Tabs ...208

Specifying a Built-in Chart Type ..208

Specifying a Template Chart Type ...210

Changing a Chart’s Layout or Style ..211

XmlMap, ByVal IsRefresh As Boolean, ByVal Result As XlXmlImportResult)181

..198

Verifying Field Entry ..200

Illegal Window Closing ..200

Getting a Filename ..201

xiContents

Using SetElement to Emulate Changes on the Layout Tab ..213

Changing a Chart Title Using VBA ..218

Emulating Changes on the Format Tab ..218

Using the Format Method to Access Formatting Options ...218

Creating Advanced Charts ..234

Creating True Open-High-Low-Close Stock Charts ...235

Creating Bins for a Frequency Chart ...236

Creating a Stacked Area Chart ...239

Exporting a Chart as a Graphic ...244

Creating a Dynamic Chart in a Userform

12 Data Mining with Advanced Filter ...249

Replacing a Loop with AutoFilter ...249

Using New AutoFilter Techniques ..251

Selecting Visible Cells Only ..255

Advanced Filter Is Easier in VBA Than in Excel ...257

Using the Excel Interface to Build an Advanced Filter ..258

Using Advanced Filter to Extract a Unique List of Values ...258

Extracting a Unique List of Values with the User Interface ..259

Extracting a Unique List of Values with VBA Code ...260

Getting Unique Combinations of Two or More Fields ..263

Using Advanced Filter with Criteria Ranges ...265

Joining Multiple Criteria with a Logical OR ..267

Joining Two Criteria with a Logical AND ..267

Other Slightly Complex Criteria Ranges ...267

The Most Complex Criteria: Replacing the List of Values with a Condition Created as the Result of a Formula268

Using Filter in Place in Advanced Filter ..275

Catching No Records When Using Filter in Place..276

Showing All Records After Filter in Place ...276

The Real Workhorse: xlFilterCopy with All Records Rather Than Unique Records Only ...276

Copying All Columns ..277

Copying a Subset of Columns and Reordering ...278

Using Filter in Place with Unique Records Only ..283

Excel in Practice: Turning Off a Few Drop-Downs in the AutoFilter

13 Using VBA to Create Pivot Tables...287

Introducing Pivot Tables ..287

Understanding Versions ...287

New in Excel 2010 ...288

New Beginning with Excel 2007 ..288

..244

Creating Pivot Charts ...246

..285

VBA and Macros: Microsoft Excel 2010xii

Creating a Vanilla Pivot Table in the Excel Interface ..290

Understanding Compact Layout ..293

Building a Pivot Table in Excel VBA ..294

Defining the Pivot Cache ...295

Creating and Configuring the Pivot Table ..295

Adding Fields to the Data Area ..296

Learning Why You Cannot Move or Change Part of a Pivot Report ..299

Determining Size of a Finished Pivot Table to Convert the Pivot Table to Values ..299

Using Advanced Pivot Table Features ..302

Using Multiple Value Fields ...302

Counting the Number of Records ...303

Grouping Daily Dates to Months, Quarters, or Years ..303

Changing the Calculation to Show Percentages ..305

Eliminating Blank Cells in the Values Area...308

Controlling the Sort Order with AutoSort ..308

Replicating the Report for Every Product ...309

Filtering a Data Set ..312

Manually Filtering Two or More Items in a Pivot Field ...312

Using the Conceptual Filters ..313

Using the Search Filter ...316

Setting Up Slicers to Filter a Pivot Table ..319

Filtering an OLAP Pivot Table Using Named Sets ...321

Using Other Pivot Table Features ...324

Calculated Data Fields..324

Calculated Items ..325

Using ShowDetail to Filter a Recordset . ..325

Changing the Layout from the Design Tab ..325

Suppressing Subtotals for Multiple Row Fields ..326

14 Excel Power ...329

File Operations ...329

List Files in a Directory ...329

Import CSV ..331

Read Entire TXT to Memory and Parse ...332

Combining and Separating Workbooks ...333

Separate Worksheets into Workbooks ...333

Combine Workbooks ...334

Filter and Copy Data to Separate Worksheets ..335

Export Data to Word ..336

Working with Cell Comments ..337

List Comments ...337

Resize Comments ..339

Resize Comments with Centering ..340

Place a Chart in a Comment ...341

xiiiContents

Utilities to Wow Your Clients ...342

Using Conditional Formatting to Highlight Selected Cell ...342

Highlight Selected Cell Without Using Conditional Formatting ...344

Custom Transpose Data ...345

Select/Deselect Noncontiguous Cells ...347

Techniques for VBA Pros ..349

Pivot Table Drill-Down ...349

Speedy Page Setup ..350

Calculating Time to Execute Code ..353

Custom Sort Order ...354

Cell Progress Indicator ...355

Protected Password Box ..356

Change Case ..359

Selecting with SpecialCells ..360

ActiveX Right-Click Menu ..360

Cool Applications ...362

Historical Stock/Fund Quotes ...362

Using VBA Extensibility to Add Code to New Workbooks

15 Data Visualizations and Conditional Formatting ..367

Introduction to Data Visualizations ..367

VBA Methods and Properties for Data Visualizations ...368

Adding Data Bars to a Range ...369

Adding Color Scales to a Range ..374

Adding Icon Sets to a Range ..375

Specifying an Icon Set..376

Specifying Ranges for Each Icon ..377

Using Visualization Tricks ..378

Creating an Icon Set for a Subset of a Range ...378

Using Two Colors of Data Bars in a Range ..380

Using Other Conditional Formatting Methods ...382

Formatting Cells That Are Above or Below Average ..383

Formatting Cells in the Top 10 or Bottom 5 ...383

Formatting Unique or Duplicate Cells ..384

Formatting Cells Based on Their Value ..385

Formatting Cells That Contain Text..386

Formatting Cells That Contain Dates ...386

Formatting Cells That Contain Blanks or Errors ..387

Using a Formula to Determine Which Cells to Format ...387

Using the New NumberFormat Property388

...363

VBA and Macros: Microsoft Excel 2010xiv

16 Reading from and Writing to the Web ...391

Getting Data from the Web ...391

Manually Creating a Web Query and Refreshing with VBA ..392

Using VBA to Update an Existing Web Query ...395

Building Many Web Queries with VBA ...396

Using Application.OnTime to Periodically Analyze Data ...399

Scheduled Procedures Require Ready Mode ..400

Specifying a Window of Time for an Update ...400

Canceling a Previously Scheduled Macro ...400

Closing Excel Cancels All Pending Scheduled Macros ...401

Scheduling a Macro to Run x Minutes in the Future ..401

Scheduling a Verbal Reminder ..402

Scheduling a Macro to Run Every 2 Minutes ..403

Publishing Data to a Web Page ...404

Using VBA to Create Custom Web Pages ...406

Using Excel as a Content Management System ...407

Bonus: FTP from Excel..409

17 Dashboarding with Sparklines in Excel 2010 ..411

Creating Sparklines ..412

Scaling the Sparklines ..414

Formatting Sparklines ...418

Using Theme Colors ...418

Using RGB Colors ...421

Formatting Sparkline Elements ...423

Formatting Win/Loss Charts ..426

Creating a Dashboard ..427

Observations About Sparklines ..428

Creating 100’s of Individual Sparklines in a Dashboard ...428

18 Automating Word ..433

Early Binding ...433

Compile Error: Can’t Find Object or Library ..435

Late Binding ..436

Creating and Referencing Objects ..437

The New Keyword ...437

CreateObject Function ..438

GetObject Function ...438

Using Constant Values ...439

Using the Watch Window to Retrieve the Real Value of a Constant ..440

Using the Object Browser to Retrieve the Real Value of a Constant ...440

xvContents

Understanding Word’s Objects ..441

Document Object ...442

Selection Object ...443

Range Object ...444

Bookmarks

19 Arrays ...453

Declare an Array ..453

Multidimensional Arrays..454

Fill an Array..455

Empty an Array ..456

Arrays Make It Easier to Manipulate Data, but Is That All?

20 Text File Processing ..463

Importing from Text Files ..463

Importing Text Files with Fewer Than 1,048,576 Rows ...463

Reading Text Files with More Than 1,048,576 Rows ...470

21 Using Access as a Back End to Enhance Multiuser Access to Data ..475

ADO Versus DAO ...476

The Tools of ADO ..478

Adding a Record to the Database...480

Retrieving Records from the Database ...481

Updating an Existing Record ..483

Deleting Records via ADO...485

Summarizing Records via ADO ...485

Other Utilities via ADO ...487

Checking for the Existence of Tables ..487

Checking for the Existence of a Field ...488

Adding a Table On the Fly ..489

Adding a Field On the Fly ...489

SQL Server Examples

...448

Controlling Form Fields in Word ..450

...457

Dynamic Arrays ..459

Passing an Array ..460

Writing Text Files ...473

..490

VBA and Macros: Microsoft Excel 2010xvi

22 Creating Classes, Records, and Collections ...493

Inserting a Class Module ..493

Trapping Application and Embedded Chart Events ..494

Application Events ...494

Embedded Chart Events ...495

Creating a Custom Object ..497

Using a Custom Object ...498

Using Property Let and Property Get to Control How Users Utilize Custom Objects ..499

Collections ...501

Creating a Collection in a Standard Module ...501

Creating a Collection in a Class Module ...502

User-Defined Types

23 Advanced Userform Techniques ..511

Using the UserForm Toolbar in the Design of Controls on Userforms ...511

More Userform Controls ...511

Check Boxes ...512

Tab Strips ...513

RefEdit ...515

Toggle Buttons ..517

Using a Scrollbar As a Slider to Select Values ...517

Controls and Collections...519

Modeless Userforms ...521

Using Hyperlinks in Userforms ...522

Adding Controls at Runtime ..523

Resizing the Userform On-the-fly ..524

Adding a Control On-the-fly ..525

Sizing On-the-fly ...525

Adding Other Controls ...525

Adding an Image On-the-fly ..526

Putting It All Together ...527

Adding Help to the Userform ...529

Showing Accelerator Keys ...529

Adding Control Tip Text ...530

Creating the Tab Order ..530

Coloring the Active Control

..506

..530

Transparent Forms ...533

xviiContents

24 Windows API ...535

What Is the Windows API? ...535

Understanding an API Declaration ...536

Using an API Declaration ...537

API Examples ...537

Retrieve the Computer Name ..538

Check Whether an Excel File Is Open on a Network ...539

Retrieve Display-Resolution Information ...540

Custom About Dialog ...541

Disable the X for Closing a Userform ..541

Running Timer ...542

Playing Sounds ..543

Retrieving a File Path ..543

Finding More API Declarations

25 Handling Errors ..549

What Happens When an Error Occurs? ...549

Debug Error Inside Userform Code Is Misleading ...551

Basic Error Handling with the On Error GoTo Syntax ...552

Generic Error Handlers ...554

Handling Errors by Choosing to Ignore Them ..554

Suppressing Excel Warnings ..556

Encountering Errors on Purpose ..556

Train Your Clients ...557

Errors While Developing Versus Errors Months Later ...557

Runtime Error 9: Subscript Out of Range ...557

RunTime Error 1004: Method Range of Object Global Failed ...558

The Ills of Protecting Code ...559

More Problems with Passwords

26 Customizing the Ribbon to Run Macros ...563

Out with the Old, In with the New ...563

Where to Add Your Code: customui Folder and File ...564

Creating the Tab and Group ...565

Adding a Control to Your Ribbon ...566

Accessing the File Structure ...571

Understanding the RELS File ..571

Renaming the Excel File and Opening the Workbook ..572

Custom UI Editor Tool ..572

...547

...560

Errors Caused by Different Versions ...561

VBA and Macros: Microsoft Excel 2010xviii

Using Images on Buttons ...572

Microsoft Office Icons ..573

Custom Icon Images ..574

Troubleshooting Error Messages ..577

The Attribute “Attribute Name” on the Element “customui Ribbon” Is Not Defined in the DTD/Schema577

Illegal Qualified Name Character ...578

Element “customui Tag Name” Is Unexpected According to Content Model of Parent Element “customui

Tag Name”..578

Excel Found Unreadable Content ...579

Wrong Number of Arguments or Invalid Property Assignment ...580

Nothing Happens ...580

Other Ways to Run a Macro ...580

Keyboard Shortcut ...580

Attach a Macro to a Command Button ..581

Attach a Macro to a Shape ...582

Attach a Macro to an ActiveX Control ..583

Running a Macro from a Hyperlink ..584

27 Creating Add-Ins ..587

Characteristics of Standard Add-Ins ...587

Converting an Excel Workbook to an Add-In ...588

Using Save As to Convert a File to an Add-In ...589

Using the VB Editor to Convert a File to an Add-In ..590

Having Your Client Install the Add-In ..591

Standard Add-Ins Are Not Secure ..592

Closing Add-Ins ...593

Removing Add-Ins ...593

Index ...597

Using a Hidden Workbook as an Alternative to an Add-In ...593

The Power of Excel
Visual Basic for Applications (VBA) combined with

Microsoft Excel is probably the most powerful tool

available to you. VBA is sitting on the desktops of

500 million users of Microsoft Office, and most

have never figured out how to harness the power

of VBA in Excel. Using VBA, you can speed the

production of any task in Excel. If you regularly use

Excel to produce a series of monthly charts, you can

have VBA do the same task for you in a matter of

seconds.

Barriers to Entry
There are two barriers to learning successful VBA

programming. First, Excel’s macro recorder is

flawed and does not produce workable code for you

to use as a model. Second, for many who learned a

programming language such as BASIC, the syntax

of VBA is horribly frustrating.

The Macro Recorder Doesn’t Work!
Microsoft began to dominate the spreadsheet mar-

ket in the mid-1990s. Although it was wildly suc-

cessful in building a powerful spreadsheet program

to which any Lotus 1-2-3 user could easily transi-

tion, the macro language was just too different.

Anyone proficient in recording Lotus 1-2-3 macros

who tried recording a few macros in Excel most

likely failed. Although the Microsoft VBA program-

ming language is much more powerful than the

Lotus 1-2-3 macro language, the fundamental flaw

is that the macro recorder does not work.

With Lotus 1-2-3, you could record a macro today,

play it back tomorrow, and it would faithfully work.

Unleash the Power of Excel
with VBA

1

Chapter 1 Unleash the Power of Excel with VBA8

When you attempt the same feat in Microsoft Excel, the macro might work today but not

tomorrow. In 1995, when I tried to record my first Excel macro, I was horribly frustrated

by this.

Visual Basic Is Not Like BASIC
The code generated by the macro recorder was unlike anything I had ever seen. It said this

was “Visual Basic” (VB). I had the pleasure of learning half a dozen programming languages

at various times; this bizarre-looking language was horribly unintuitive and did not resem-

ble the BASIC language I had learned in high school.

To make matters worse, even in 1995 I was the spreadsheet wizard in my office. My com-

pany had forced everyone to convert from Lotus 1-2-3 to Excel, which meant I was faced

with a macro recorder that didn’t work and a language that I couldn’t understand. This was

not a good combination of events.

My assumption in writing this book is that you are pretty talented with a spreadsheet.

You probably know more than 90 percent of the people in your office. I also assume that

even though you are not a programmer, you might have taken a class in BASIC at some

point. However, knowing BASIC is not a requirement—it actually is a barrier to entry into

the ranks of being a successful VBA programmer. There is a good chance that you have

recorded a macro in Excel and a similar chance that you were not happy with the results.

Good News: Climbing the Learning Curve Is Easy
Even if you’ve been frustrated with the macro recorder, it is really just a small speed bump

on your road to writing powerful programs in Excel. This book will not only teach you why

the macro recorder fails, but also how to change the recorded code into something useful.

For all the former BASIC programmers in the audience, I will decode VBA so that you can

easily pick through recorded macro code and understand what is happening.

Great News: Excel with VBA Is Worth the Effort
Although you probably have been frustrated with Microsoft over the inability to record

macros in Excel, the great news is that Excel VBA is powerful. Absolutely anything you

can do in the Excel interface can be duplicated with stunning speed in Excel VBA. If you

find yourself routinely creating the same reports manually day after day or week after week,

Excel VBA will greatly streamline those tasks.

The authors of this book work for MrExcel Consulting. In this role, we have automated

reports for hundreds of clients. The stories are often similar: The MIS department has a

several-month backlog of requests. Someone in accounting or engineering discovers that he

or she can import some data into Excel and get the reports necessary to run the business.

This is a liberating event—you no longer need to wait months for the IT department to

write a program. However, the problem is that after you import the data into Excel and win

accolades from your manager for producing the report, you will likely be asked to produce

the same report every month or every week. This becomes very tedious.

9Knowing Your Tools: The Developer Tab

Again, the great news is that with a few hours of VBA programming, you can automate the

reporting process and turn it into a few button clicks. The reward is great. So, hang with

me as we cover a few of the basics.

This chapter exposes why the macro recorder does not work. It also walks through an

example of recorded code and demonstrates why it will work today but fail tomorrow. I

realize that the code you see in this chapter might not be familiar to you, but that’s okay.

The point of this chapter is to demonstrate the fundamental problem with the macro

recorder. You also learn the fundamentals of the Visual Basic environment.

Knowing Your Tools: The Developer Tab
Let’s start with a basic overview of the tools needed to use VBA. By default, Microsoft

hides the VBA tools. You need to complete the following steps to change a setting in Excel

options to access the Developer tab.

 1. Open the File menu to get to the new Backstage view.

 2. Along the left navigation bar, select Options under Excel.

 3. In the Excel Options dialog, select Customize Ribbon from the left navigation.

 4. In the Right list box, the Developer tab is third from the bottom. Select the check box

next to this item.

 5. Click OK to return to Excel.

Excel displays the Developer tab shown in Figure 1.1.

Figure 1.1
The Developer tab
provides an interface for
running and recording
macros.

The Code group on the Developer tab contains the icons used for recording and playing

back VBA macros, as listed here:

 ■ Visual Basic icon—Opens the Visual Basic Editor.

 ■ Macros icon—Displays the Macro dialog, where you can choose to run or edit a

macro from the list of macros.

 ■ Record Macro icon—Begins the process of recording a macro.

 ■ Use Relative Reference icon—Toggles between using relative or absolute recording.

With relative recording, Excel will record that you move down three cells. With abso-

lute recording, Excel will record that you selected cell A4.

 ■ Macro Security icon—Accesses the Trust Center, where you can choose to allow or

disallow macros to run on this computer.

Chapter 1 Unleash the Power of Excel with VBA10

The Controls group of the Developer tab contains an Insert menu where you can access

a variety of programming controls that can be placed on the worksheet. See “Assigning a

Macro to a Form Control, Text Box, or Shape,” later in this chapter. Other icons in this

group enable you to work with the on-sheet controls. The Run Dialog button enables you

to display a custom dialog box or userform that you designed in VBA. For more on user-

forms, see Chapter 10, “Userforms: An Introduction.”

The XML group of the Developer ribbon contains tools for importing and exporting XML documents.

N
O

T
E

Macro Security
After VBA macros were used as the delivery method for some high-profile viruses,

Microsoft changed the default security settings to prevent macros from running. Therefore,

before we can begin discussing the recording of a macro, we need to show you how to

adjust the default settings.

In Excel 2010, you can either globally adjust the security settings or control macro settings

for certain workbooks by saving the workbooks in a trusted location. Any workbooks stored

in a folder that is marked as a trusted location will automatically have its macros enabled.

You can find the macro security settings under the Macro Security icon on the Developer

tab. When you click this icon, the Macro Settings category of the Trust Center is displayed.

You can use the left navigation bar in the dialog to access the Trusted Locations list.

Adding a Trusted Location
You can choose to store your macro workbooks in a folder that is marked as a trusted loca-

tion. Any workbook stored in a trusted folder will have its macros enabled. Microsoft sug-

gests that a trusted location should be on your hard drive. The default setting is that you

cannot trust a location on a network drive.

To specify a trusted location, follow these steps:

 1. Click Macro Security in the Developer tab.

 2. Click Trusted Locations in the left navigation pane of the Trust Center.

 3. If you want to trust a location on a network drive, select Allow Trusted Locations on

My Network.

 4. Click the Add New Location button. Excel displays the Microsoft Office Trusted

Locations dialog (see Figure 1.2).

 5. Click the Browse button. Excel displays the Browse dialog.

 6. Browse to the parent folder of the folder you want to be a trusted location. Click the

trusted folder. Although the folder name does not appear in the Folder Name box,

click OK. The correct folder name will appear in the Browse dialog.

11Macro Security

 7. If you want to trust subfolders of the selected folder, select Subfolders of This Location

Will Be Trusted.

 8. Click OK to add the folder to the Trusted Locations list.

Use care when selecting a trusted location. When you double-click an Excel attachment in an e-mail,

Outlook stores the file in a temporary folder on your C: drive. You will not want to globally add C:\ and

all subfolders to the Trusted Locations list.

C A U T I O N

Although trusted locations are not new in Excel 2010, Microsoft has made the process of

adding trusted locations more discoverable in Excel 2010.

Using Macro Settings to Enable Macros in Workbooks Outside of Trusted Locations
For all macros not stored in a trusted location, Excel relies on the macro settings. The

Low, Medium, High, and Very High settings that were familiar in Excel 2003 have been

renamed.

To access the macro settings, click Macro Security in the Developer tab. Excel displays the

Macro Settings category of the Trust Center dialog. Select the second option, Disable All

Macros with Notification. A description of each option follows:

 ■ Disable All Macros Without Notification—This setting prevents all macros from

running. This setting is for people who never intend to run macros. Because you are

currently holding a book that teaches you how to use macros, it is assumed that this

setting is not you. This setting is roughly equivalent to the old Very High Security set-

ting in Excel 2003. With this setting, only macros in the Trusted Locations folders can

run.

 ■ Disable All Macros with Notification—This setting is similar to Medium security in

Excel 2003 and is the recommended setting. In Excel 2003, a Medium setting caused

a box to be displayed when you opened a file containing macros. This box forced the

Figure 1.2
Manage trusted folders
on the Trusted Locations
category of the Trust
Center.

Chapter 1 Unleash the Power of Excel with VBA12

person to choose either Enable or Disable. Many novice Excel users randomly choose

from this box. In Excel 2010, the message is displayed in the Message Area that macros

have been disabled. You can choose to enable the content by clicking that option, as

shown in Figure 1.3.

 ■ Disable All Macros Except Digitally Signed Macros—This setting requires you to

obtain a digital signing tool from VeriSign or another provider. This might be appro-

priate if you are going to be selling add-ins to others, but a bit of a hassle if you just

want to write macros for your own use.

 ■ Enable All Macros (Not Recommended: Potentially Dangerous Code Can

Run)—This setting is similar to Low macro security in Excel 2003. Although it

requires the least amount of hassle, it also opens your computer up to attacks from

malicious Melissa-like viruses. Microsoft suggests that you do not use this setting.

Figure 1.3
Open a macro workbook
using the Disable All
Macros with Notification
setting to enable the
macros.

Using Disable All Macros with Notification
It is recommended that you set your macro settings to Disable All Content with

Notification. If you use this setting and open a workbook that contains macros, you will see

a Security Warning in the area just above the formula bar. Assuming you were expecting

macros in this workbook, click Enable Content.

If you do not want to enable macros for the current workbook, dismiss the Security

Warning by clicking the X at the far right of the message bar.

If you forget to enable the macros and attempt to run a macro, Excel indicates that you

cannot run the macro because all macros have been disabled. If this occurs, close the work-

book and reopen it to access the message bar again.

After you enable macros in a workbook stored on a local hard drive and then save the workbook, Excel

will remember that you previously enabled macros in this workbook. The next time you open this

workbook, macros will be automatically enabled.

C A U T I O N

Overview of Recording, Storing, and Running a Macro
Recording a macro is useful when you do not have experience in writing lines of code in a

macro. As you gain more knowledge and experience, you will begin to record lines of code

less frequently.

13Overview of Recording, Storing, and Running a Macro

To begin recording a macro, select Record Macro from the Developer tab. Before record-

ing begins, Excel displays the Record Macro dialog box, as shown in Figure 1.4.

Figure 1.4
Use the Record Macro dia-
log box to assign a name
and a shortcut key to the
macro being recorded.

Filling Out the Record Macro Dialog
In the Macro Name field, type a name for the macro. Be sure to type continuous charac-

ters. For example, type Macro1 without a space, not Macro 1 with a space. Assuming you

will soon be creating many macros, use a meaningful name for the macro. A name such as

FormatReport is more useful than Macro1.

The second field in the Record Macro dialog box is a shortcut key. If you type J in this

field, and then press Ctrl+J, this macro runs. Note that most of the lowercase shortcuts

from Ctrl+a through Ctrl+z already have a use in Excel. Rather than being limited to the

unassigned Ctrl+j, you can hold down the Shift key and type Shift+A through Shift+Z in

the shortcut box. This will assign the macro to Ctrl+Shift+A.

You can reuse a shortcut key for a macro. If you assign a macro to Ctrl+c, Excel will run your macro

instead of doing the normal action of copy.

C A U T I O N

In the Record Macro dialog box, choose where you want to save a macro when it is

recorded: Personal Macro Workbook, New Workbook, This Workbook. It is recommended

that you store macros related to a particular workbook in This Workbook.

The Personal Macro Workbook (Personal.xlsm) is not a visible workbook; it is created if

you choose to save the recording in the Personal Macro Workbook. This workbook is used

to save a macro in a workbook that will open automatically when you start Excel, thereby

enabling you to use the macro. After Excel is started, the workbook is hidden. If you want

to display it, select Unhide from the View tab.

Chapter 1 Unleash the Power of Excel with VBA14

The fourth box in the Record Macro dialog is for a description. This description is added

as a comment to the beginning of your macro. Note that legacy versions of Excel automati-

cally noted the date and username of the person recording the macro. Excel 2010 no longer

automatically inserts this information in the Description field.

After you select the location where you want to store the macro, click OK. Record your

macro. When you are finished recording the macro, click the Stop Recording icon in the

Developer tab.

It is not recommended you use the personal workbook for every macro you save. Save only those mac-

ros that assist you in general tasks—not in tasks that are performed in a specific sheet or workbook.
T

IP

You can also access a Stop Recording icon in the lower-left corner of the Excel window. Look for a small

blue square to the right of the word Ready in the status bar. Using this Stop button might be more

convenient than returning to the Developer tab. After you record your first macro, this area will usually

have a Record Macro icon, which is a small red dot on an Excel worksheet.

T
IP

Running a Macro
If you assigned a shortcut key to your macro, you can play it by pressing the key combina-

tion. Macros can also be assigned to toolbar buttons, forms controls, drawing objects, or

you can run them from the Visual Basic toolbar.

Creating a Macro Button on the Ribbon
You can add an icon to a new group on the Ribbon to run your macro. This is appropriate

for macros stored in the Personal Macro Workbook. Follow these steps to add a macro but-

ton to the Ribbon:

 1. Click the File menu and select Excel Options to open the Excel Options dialog.

 2. In the Excel Options dialog, select the Customize Ribbon category from the left-side

navigation.

Note that a shortcut to replace steps 1 and 2 is to right-click the Ribbon and select Customize Ribbon.

T
IP

 3. In the list box on the right, choose the tab name where you want to add an icon.

 4. Click the New Group button below the right list box. Excel adds a new entry called

New Group (Custom) to the end of the groups in that ribbon tab.

15Running a Macro

 5. To move the group to the left in the ribbon tab, click the up-arrow icon on the right

side of the dialog several times.

 6. To rename the group, click the Rename button. Type a new name, such as Report

Macros. Click OK. Excel will show the group in the list box as Report Macros

(Custom). Note that the word Custom will not appear in the Ribbon.

 7. Open the upper-left drop-down and choose Macros from the list. The Macros category

is fourth in the list. Excel displays a list of available macros in the left list box.

 8. Choose a macro from the left list box. Click the Add button in the center of the dialog.

Excel moves the macro to the right list box in the selected group. Excel uses a generic

VBA icon for all macros. You can change the icon by following steps 9 and 10.

 9. Click the macro in the right list box. Click the Rename button at the bottom of the

right list box. Excel displays a list of 180 possible icons. Choose an icon. Alternatively,

type a friendly label for the icon, such as Format Report.

 10. Click OK to close Excel options. The new button appears on the selected Ribbon tab.

Creating a Macro Button on the Quick Access Toolbar
You can add an icon to the Quick Access toolbar to run your macro. If your macro is stored

in the Personal Macro Workbook, you can have the button permanently displayed in the

Quick Access toolbar. If the macro is stored in the current workbook, you can specify that

the icon should appear only when the workbook is open. Follow these steps to add a macro

button to the Quick Access toolbar:

 1. Click the File menu and select Excel Options to open the Excel Options dialog.

 2. In the Excel Options dialog select the Customize category from the left-side naviga-

tion.

Note that a shortcut to replace steps 1 and 2 is to right-click the Quick Access toolbar and select

Customize Quick Access Toolbar.

T
IP

 3. If your macro should be available only when the current workbook is open, open the

upper-right drop-down and change For All Documents (Default) to For <FileName.

xlsm>. Any icons associated with the current workbook are displayed at the end of the

Quick Access toolbar.

 4. Open the upper-left drop-down and select Macros from the list. The Macros category

is fourth in the list. Excel displays a list of available macros in the left list box.

 5. Choose a macro from the left list box. Click the Add button in the center of the dialog.

Excel moves the macro to the right list box. Excel uses a generic VBA icon for all mac-

ros. You can change the icon by following steps 6 through 8.

 6. Click the macro in the right list box. Click the Modify button at the bottom of the

right list box. Excel displays a list of 180 possible icons (see Figure 1.5).

Chapter 1 Unleash the Power of Excel with VBA16

 7. Choose an icon from the list. In the Display Name box, replace the macro name with a

short name that will appear in the ToolTip for the icon.

 8. Click OK to close the Modify Button dialog.

 9. Click OK to close Excel options. The new button appears on the Quick Access toolbar.

Assigning a Macro to a Form Control, Text Box, or Shape
If you want to create a macro specific to a workbook, store the macro in the workbook and

attach it to a form control or any object on the sheet.

Follow these steps to attach a macro to a form control on the sheet:

 1. On the Developer tab, click the Insert button to open its drop-down list. Excel offers

12 form controls and 12 ActiveX controls. Many icons look similar in this drop-down.

Click the Button Form Control icon at the upper-left icon in the drop-down.

 2. Move your cursor over the worksheet; the cursor changes to a plus sign.

 3. Draw a button on the sheet by clicking and holding the left mouse button while draw-

ing a box shape. Release the button when you have finished.

 4. Choose a macro from the Assign Macro dialog box and click OK. The button is cre-

ated with generic text such as Button 1. To customize the text or the button appear-

ance, follow steps 5 through 7.

Considering Excel 2003 offered 4,096 possible icons and an icon editor, the list of 180 is a major disap-

pointment.N
O

T
E

Enter the ToolTip Here

Figure 1.5
Attach a macro to a but-
ton on the Quick Access
toolbar.

17Running a Macro

 5. Type a new label for the button. Note that while you are typing, the selection border

around the button changes from dots to diagonal lines to indicate that you are in Text

Edit mode. You cannot change the button color while in Text Edit mode. To exit Text

Edit mode, either click the diagonal lines to change them to dots or Ctrl-click the

button again. Note that if you accidentally click away from the button, you should

Ctrl+click the button to select it. Then drag the cursor over the text on the button to

select the text.

 6. Right-click the dots surrounding the button and select Format Control. Excel displays

the Format Control dialog with seven tabs across the top. If your Format Control dia-

log has only a Font tab, you failed to exit Text Edit mode. If this occurred, close the

dialog, Ctrl-click the button, and repeat this step.

 7. Use the settings in the Format Control dialog to change the font size, font color, mar-

gins, and similar settings for the control. Click OK to close the Format Control dialog

when you have finished. Click on a cell to unselect the button.

 8. Click the button to run the macro.

Macros can be assigned to any worksheet object such as clip art, a shape, SmartArt graph-

ics, or text box. In Figure 1.6, the top button is a traditional button form control. The other

images are clip art, a shape with WordArt, and a SmartArt graphic. To assign a macro to

any object, right-click the object, and select Assign Macro.

Figure 1.6
Assigning a macro to a
form control or an object
appropriate for macros
stored in the same work-
book as the control. You
can assign a macro to any
of these objects.

SmartArt Graphic

Shape with WordArt

Ribbon Customization

QAT Customization

Clip Art

Button Form Control

Chapter 1 Unleash the Power of Excel with VBA18

Using New File Types in Excel 2010
Excel 2010 offers support for four file types. Macros are not allowed to be stored in the

default file type. You have to use the Save As setting for all of your macro workbooks, or

you can change the default file type used by Excel 2010.

The available files types are as follows:

 ■ Excel Workbook (.xlsx)—Files are stored as a series of XML objects and then zipped

into a single file. This new file-saving paradigm in Excel 2010 allows for significantly

smaller file sizes. It also allows other applications (even Notepad!) to edit or create

Excel workbooks. Unfortunately, macros cannot be stored in files with an .xlsx exten-

sion.

 ■ Excel Macro-Enabled Workbook (.xlsm)—This is similar to the default .xlsx format,

except macros are allowed. The basic concept is that if someone has an .xlsx file, he or

she will not need to worry about malicious macros. However, if they see an .xlsm file,

they should be concerned that there might be macros attached.

 ■ Excel Binary Workbook (.xlsb)—This is a binary format designed to handle the

larger 1.1-million-row grid size in Excel 2010. Legacy versions of Excel stored their

files in a proprietary binary format. Although binary formats might load quicker, they

are more prone to corruption, and a few lost bits can destroy the whole file. Macros are

allowed in this format.

 ■ Excel 97-2003 Workbook (.xls)—This format produces files that can be read by any-

one using legacy versions of Excel. Macros are allowed in this binary format; however,

when you save in this format, you lose access to any cells outside of A1:IV65536. In

addition, if someone opens the file in Excel 2003, he or she will lose access to anything

that used features introduced in Excel 2007 or later.

To avoid having to choose a macro-enabled workbook in the Save As dialog, you can cus-

tomize your copy of Excel to always save new files in the .xlsm format by following these

steps:

 1. Click the File menu and select Excel Options.

 2. In the Excel Options dialog, select the Save category from the left navigation pane.

 3. The first drop-down is Save Files in This Format. Open the drop-down and select

Excel Macro-Enabled Workbook (*.xlsm). Click OK.

Although you and I are not afraid to use macros, I have encountered some people who seem to freak

out when they see the .xlsm file type. They actually seem angry that I sent them an .xlsm file that did

not have any macros. Their reaction seemed reminiscent of King Arthur’s “You got me all worked up!”

line in Monty Python and the Holy Grail.

N
O

T
E

19Understanding the VB Editor

Understanding the VB Editor
Figure 1.7 shows an example of the typical VB Editor screen. You can see three windows:

Project Explorer, the Properties window, and the Programming window. Don’t worry if

your window doesn’t look exactly like this because you will see how to display the windows

you need in this review of the editor.

If you encounter someone who seems to have a fear of the .xlsm file type, remind them of these points:

■ Every workbook created in the past 20 years could have had macros, but in fact, most

did not.

■ If someone is trying to avoid macros, they should use the security settings to prevent

macros from running anyway (refer to Figure 1.3). They can still open the .xlsm file to

get the data in the spreadsheet.

With these arguments, I hope you can overcome any fears of the .xlsm file type so that it can be your

default file type.

Figure 1.7
The VB Editor window.

VB Editor Settings
Several settings in the VB Editor enable you to customize this editor. The following sub-

section covers the setting that will help with your programming.

Chapter 1 Unleash the Power of Excel with VBA20

Customizing VB Editor Options Settings

Under Tools, Options, Editor, you will find several useful settings. All settings except for

one are set correctly by default. The remaining setting requires some consideration on your

part. This setting is Require Variable Declaration. By default, Excel does not require you to

declare variables. I prefer this setting because it can save time when you create a program.

My coauthor prefers to change this setting to require variable declaration. This change

forces the compiler to stop if it finds a variable that it does not recognize, which reduces

misspelled variable names. It is a matter of your personal preference if you turn this setting

on or keep it off.

The Project Explorer
The Project Explorer lists any open workbooks and add-ins that are loaded. If you click

the + icon next to the VBA Project, you will see that there is a folder with Microsoft Excel

objects. There can also be folders for forms, class modules, and standard modules. Each

folder includes one or more individual components.

Right-clicking a component and selecting View Code or just double-clicking the compo-

nents brings up any code in the Programming window. The exception is userforms, where

double-clicking displays the userform in Design view.

To display the Project Explorer window, select View, Project Explorer from the menu, and

then press Ctrl+R or click the Project Explorer icon on the toolbar.

Figure 1.8 shows the Project Explorer pane. This pane can show Microsoft Excel objects,

userforms, modules, and class modules.

Figure 1.8
The Project Explorer
window displays different
types of modules.

21Understanding Shortcomings of the Macro Recorder

To insert a module, right-click your project, select Insert, and then choose the type of mod-

ule you want. The available modules are as follows:

 ■ Microsoft Excel objects—By default, a project consists of sheet modules for each

sheet in the workbook and a single ThisWorkbook module. Code specific to a sheet

such as controls or sheet events is placed on the corresponding sheet. Workbook events

are placed in the ThisWorkbook module. You learn more about events in Chapter 9,

“Event Programming.”

 ■ Forms—Excel allows you to design your own forms to interact with the user. You learn

more about these forms in Chapter 10.

 ■ Modules—When you record a macro, Excel automatically creates a module in which

to place the code. Most of your code will reside in these types of modules.

 ■ Class modules—Class modules are Excel’s way of letting you create your own objects.

They also allow pieces of code to be shared among programmers without the program-

mer needing to understand how it works. You will learn more about class modules in

Chapter 22, “Creating Classes, Records, and Collections.”

The Properties Window
The Properties window enables you to edit the properties of various components such as

sheets, workbooks, modules, and form controls. The Property list varies according to what

component is selected. To display this window, select View, Properties Window from the

menu, press F4, or click the Project Properties icon on the toolbar.

Understanding Shortcomings of the Macro Recorder
Suppose you work in an accounting department. Each day you receive a text file from

the company system showing all the invoices produced the prior day. This text file has

commas separating each field. The columns in the file are InvoiceDate, InvoiceNumber,

SalesRepNumber, CustomerNumber, ProductRevenue, ServiceRevenue, and ProductCost

(see Figure 1.9).

Figure 1.9
Invoice.txt file.

Each morning, you manually import this file into Excel. You add a total row to the data,

bold the headings, and then print the report for distribution to a few managers.

Chapter 1 Unleash the Power of Excel with VBA22

The task mentioned in the previous section is perfect for a macro. However, before you record a macro, think about the

steps you will use. In this case, the steps you will use are as follows:

1. Click the File menu and select Open.

2. Navigate to the folder where Invoice.txt is stored.

3. Select All Files(*.*) from the Files of Type drop-down list.

4. Select Invoice.txt.

5. Click Open.

6. In the Text Import Wizard—Step 1 of 3, select Delimited from the Original Data Type section.

7. Click Next.

8. In the Text Import Wizard—Step 2 of 3, clear the Tab key and select Comma in the Delimiters section.

9. Click Next.

 10. In the Text Import Wizard—Step 3 of 3, select General in the Column Data Format section and change it to Date:

MDY.

 11. Click Finish to import the file.

 12. Press the End key followed by the down arrow to move to the last row of data.

 13. Press the down arrow one more time to move to the total row.

 14. Type the word Total.

 15. Press the right-arrow key four times to move to Column E of the total row.

 16. Click the Autosum button and press Ctrl+Enter to add a total to the Product Revenue column while remaining in

that cell.

17. Click the AutoFill handle and drag it from Column E to Column G to copy the total formula to Columns F and G.

18. Highlight Row 1 and click the Bold icon on the Home tab to set the headings in bold.

19. Highlight the Total row and click the Bold icon on the Home tab to set the totals in bold.

20. Press Ctrl+A to select all cells.

21. From the Home tab, select Format, AutoFit Column Width.

After you have rehearsed these steps in your head, you are ready to record your first macro. Open a blank workbook and

save it with a name such as MacroToImportInvoices.xlsm. Click the Record Macro button on the Developer tab.

In the Record Macro dialog, the default macro name is Macro1. Change this to something descriptive like

ImportInvoice. Make sure that the macros will be stored in This Workbook. You might want an easy way to run this

macro later, so enter the letter i in the Shortcut Key field. In the Description field, add a little descriptive text to tell what

the macro is doing (see Figure 1.10). Click OK when you are ready.

C A S E S T U D Y : P R E P A R I N G T O R E C O R D T H E M A C R O

This seems like a simple process that would be ideally suited to using the macro recorder.

However, due to some problems with the macro recorder, your first few attempts might not

be successful. The following case study explains how to overcome these problems.

23Understanding Shortcomings of the Macro Recorder

Recording the Macro
The macro recorder is now recording your every move, but don’t be nervous. For this reason, perform your steps in exact

order without extraneous actions. If you accidentally move to Column F, type a value, clear the value, and then move back

to E to enter the first total, the recorded macro blindly makes that same mistake day after day after day. Recorded macros

move fast, but there is nothing like watching the macro recorder play out your mistakes repeatedly.

Carefully, execute all the actions necessary to produce the report. After you have performed the final step, click the Stop

button in the lower-left corner of the Excel window or click Stop Recording in the Developer tab.

Now it is time to look at your code. Switch to the VB Editor by selecting Visual Basic from the Developer tab or pressing

Alt+F11.

Figure 1.10
Before recording your
macro, complete the
Record Macro dialog box.

Examining Code in the Programming Window
Let’s look at the code you just recorded from the case study. Don’t worry if it doesn’t make

sense yet.

To open the VB Editor, press Alt+F11. In your VBA Project (MacroToImportInvoices.xls),

find the component Module1, right-click the module, and select View Code. Notice that

some lines start with an apostrophe—these are comments and are ignored by the program.

The macro recorder starts your macros with a few comments, using the description you

entered in the Record Macro dialog. The comment for the Keyboard Shortcut is there to

remind you of the shortcut.

The comment does not assign the shortcut. If you change the comment to be Ctrl+J, it does not change

the shortcut. You must change the setting in the Macro dialog box in Excel or run this line of code:

Application.MacroOptions Macro:=”ImportInvoice”, _
 Description:=””, ShortcutKey:=”j”

N
O

T
E

Chapter 1 Unleash the Power of Excel with VBA24

Recorded macro code is usually pretty neat (see Figure 1.11). Each noncomment line of

code is indented four characters. If a line is longer than 100 characters, the recorder breaks

it into multiple lines and indents the lines an additional four characters. To continue a line

of code, type a space and an underscore at the end of the line.

Note that the physical limitations of this book do not allow 100 characters on a single line. Therefore,

the lines will be broken at 80 characters so that they fit on a page. For this reason, your recorded macro

might look slightly different from the ones that appear in this book.

N
O

T
E

Figure 1.11
The recorded macro is
neat looking and nicely
indented.

Consider that the following seven lines of recorded code is actually only one line of code

that has been broken into seven lines for readability:

Workbooks.OpenText Filename:= _
 “C:\invoice.txt”, Origin:=437, StartRow:=1, DataType:=xlDelimited, _
 TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=False, _
 Tab:=True, Semicolon:=False, Comma:=True, Space:=False, _
 Other:=False, FieldInfo:=Array(Array(1, 3), Array(2, 1), Array(3, 1), _
 Array(4, 1), Array(5, 1), Array(6, 1), Array(7, 1)), _
 TrailingMinusNumbers:=True

Counting this as one line, the macro recorder was able to record our 21-step process in 14

lines of code, which is pretty impressive.

Each action you perform in the Excel user interface might equate to one or more lines of recorded code.

Some actions might generate a dozen lines of code.N
O

T
E

25Understanding Shortcomings of the Macro Recorder

Test Each Macro

It is always a good idea to test macros. To test your new macro, return to the regular

Excel interface by pressing Alt+F11. Close Invoice.txt without saving any changes.

MacroToImportInvoices.xls is still open.

Press Ctrl+I to run the recorded macro. It should work beautifully if you completed the

steps correctly. The data is imported, totals are added, bold formatting is applied, and the

columns are made wider. This seems like a perfect solution (see Figure 1.12).

Figure 1.12
The macro formats the
data in the sheet.

Running the Macro on Another Day Produces Undesired Results
After testing the macro, be sure to save your macro file to use on another day. The next day,

after receiving a new Invoice.txt file from the system, you open the macro, press Ctrl+I to

run it, and disaster strikes. The data for June 6 happened to have 9 invoices, while the data

for the June 7 has 17 invoices. However, the recorded macro blindly added the totals in

Row 12 because this was where you put the totals when the macro was recorded (see Figure

1.13).

Figure 1.13
The intent of the recorded
macro was to add a total
at the end of the data,
but the recorder made a
macro that always adds
totals at Row 11.

This problem arises because the macro recorder is recording all your actions in absolute

mode by default. Instead of using the default state of the macro recorder, the next section

discusses relative recording and how this might get you closer to a final solution.

Chapter 1 Unleash the Power of Excel with VBA26

Possible Solution: Use Relative References When Recording
By default, the macro recorder records all actions as absolute actions. If you navigate to Row

11 when you record the macro on Monday, the macro will always go to Row 11 when the

macro is run. This is rarely appropriate when dealing with variable numbers of rows of

data. The better option is to use relative references when recording.

Macros recorded with absolute references note the actual address of the cell pointer, such as

A11. Macros recorded with relative references note that the cell pointer should move a cer-

tain number of rows and columns from its current position. For example, if the cell pointer

starts in cell A1, the code ActiveCell.Offset(16, 1).Select would move the cell pointer

to B17, which is the cell 16 rows down and 1 column to the right.

Let’s try the same case study again, this time using relative references. The solution will be

much closer to working correctly.

Let’s try to record the macro again, but this time you will use relative references. Close Invoice.txt without saving

changes. In the workbook MacroToImportInvoices.xls, record a new macro by selecting Record Macro from the

Developer tab. Give the new macro a name of ImportInvoicesRelative and assign a different shortcut key such as

Ctrl+Shift+J (see Figure 1.14).

As you start to record the macro, go through the process of opening the Invoice.txt file. Before navigating to the last

row of data by pressing the End key + then the down-arrow key, click the Use Relative Reference button on the Developer

tab (refer to Figure 1.1).

Continue through the actions in the script from the case study:

1. Press the End key followed by the down-arrow key to move to the last row of data.

2. Press the down arrow one more time to move to the total row.

3. Type the word Total.

C A S E S T U D Y : R E C O R D I N G T H E M A C R O W I T H R E L A T I V E R E F E R E N C E S

Figure 1.14
Getting ready to record a
second try.

27Understanding Shortcomings of the Macro Recorder

 4. Press the right-arrow key four times to move to Column E of the Total row.

 5. Click the Autosum button, and then press Ctrl+Enter to add a total to the Product Revenue column while remaining

in that cell.

 6. Click the AutoFill handle and drag from Column E to Column G to copy the total formula to Columns F and G.

 7. Press Shift+spacebar to select the entire row. Type Ctrl+b to apply bold formatting to it. At this point, you need to

move to Cell A1 to apply bold to the headings. You do not want the macro recorder to record the movement from

Row 11 to Row 1 because it would record this as moving 10 rows up, which might not be correct tomorrow. Before

moving to A1, toggle the Use Relative Recording button off, and then continue recording the rest of the macro.

 8. Highlight Row 1 and click the Bold icon to set the headings in bold.

 9. Press Ctrl+A to select all cells.

10. From the Home tab, select Format, AutoFit Column Width.

11. Select cell A1.

12. Stop recording.

Press Alt+F11 to go to the VB Editor to review your code. The new macro appears in Module1 below the previous macro.

If you close Excel between recording the first and second macro, Excel inserts a new module called Module2 for the newly

recorded macro.

The following code has been edited with two comments that will help you remember where you turned the relative

recording on and then off:

Sub ImportInvoicesRelative()
‘
‘ ImportInvoicesRelative Macro
‘ Use relative references for some of the steps of the macro
‘ to format the invoice.txt file
‘
 Workbooks.OpenText Filename:= _
 “C:\invoice.txt”, Origin:=437, StartRow:=1, DataType:=xlDelimited, _
 TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=False, _
 Tab:=True, Semicolon:=False, Comma:=True, Space:=False, _
 Other:=False, FieldInfo:=Array(Array(1, 3), Array(2, 1), Array(3, 1), _
 Array(4, 1), Array(5, 1), Array(6, 1), Array(7, 1)), _
 TrailingMinusNumbers:=True

‘ Turned on relative recording here
 Selection.End(xlDown).Select
 ActiveCell.Offset(1, 0).Range(“A1”).Select
 ActiveCell.FormulaR1C1 = “’Total”
 ActiveCell.Offset(0, 4).Range(“A1”).Select
 Selection.FormulaR1C1 = “=SUM(R[-16]C:R[-1]C)”
 Selection.AutoFill Destination:=ActiveCell.Range(“A1:C1”), Type:= _
 xlFillDefault

Chapter 1 Unleash the Power of Excel with VBA28

Open MacroToImportInvoices.xls and run the new macro with Ctrl+J. This time, every-

thing should look good with the totals in the correct places. Look at Figure 1.16—see any-

thing out of the ordinary?

‘ Turned off relative recording here
 ActiveCell.Range(“A1:C1”).Select
 ActiveCell.Rows(“1:1”).EntireRow.Select
 ActiveCell.Activate
 Selection.Font.Bold = True
 Rows(“1:1”).Select
 Selection.Font.Bold = True
 Cells.Select
 Selection.Columns.AutoFit
 Range(“A1”).Select
End Sub

To test the macro, close Invoice.txt without saving, and then run the macro with Ctrl+J. Everything should look good,

and you should get the same results.

The next test is to see whether the program works on the next day when you might have more rows. Figure 1.15 shows

the data for June 7.

Figure 1.15
Will the macro with rela-
tive references work with
this data?

Figure 1.16
The result of running the
Relative macro.

29Understanding Shortcomings of the Macro Recorder

If you aren’t careful, you might print these reports for your manager. If you did, you would

be in trouble. When you look in cell E19, Excel has inserted a green triangle to tell you to

look at the cell. If you happened to try this back in Excel 95 or Excel 97 before SmartTags,

there would not have been an indicator that anything was wrong.

When you move the cell pointer to E19, an alert indicator pops up near the cell. This indi-

cator tells you the formula fails to include adjacent cells. If you look in the formula bar, you

will see that the macro totaled only from Row 10 to Row 18. Neither the relative recording

nor the nonrelative recording is smart enough to replicate the logic of the AutoSum button.

At this point, some people would give up. However, imagine that you might have had fewer

invoice records on this particular day. Excel would have rewarded you with the illogical for-

mula of =SUM(E6:E1048574) and a circular reference, as shown in Figure 1.17.

Figure 1.17
The result of running
the Relative macro with
fewer invoice records.

If you have tried using the macro recorder, most likely you would run into similar problems

as the ones produced in the last two case studies. Although this is frustrating, you should be

happy to know that the macro recorder actually gets you 95 percent of the way to a useful

macro.

Your job is to recognize where the macro recorder is likely to fail and then to be able to

dive into the VBA code to fix the one or two lines that require adjusting to have a perfect

macro. With some added human intelligence, you can produce awesome macros to speed

up your daily work.

 If you are like me, you are cursing Microsoft about now. We have wasted a good deal of time over a couple of days, and

neither macro works. What makes it worse is that this sort of procedure would have been handled perfectly by the old

Lotus 1-2-3 macro recorder introduced in 1983. Mitch Kapor solved this problem 24 years ago, and Microsoft still can’t

get it right.

Did you know that up through Excel 97, Microsoft Excel secretly ran Lotus command-line macros? I found this out right

after Microsoft quit supporting Excel 97. At that time, a number of companies upgraded to Excel XP, which no longer sup-

ported the Lotus 1-2-3 macros. Many of these companies hired us to convert the old Lotus 1-2-3 macros to Excel VBA. It

is interesting that from Excel 5, Excel 95, and Excel 97, Microsoft offered an interpreter that could handle the Lotus mac-

ros that solved this problem correctly, yet their own macro recorder couldn’t (and still can’t!) solve the problem.

Chapter 1 Unleash the Power of Excel with VBA30

Never Use the AutoSum Button While Recording a Macro
There actually is a macro-recorder solution to the current problem. It is important to rec-

ognize that the macro recorder will never correctly record the intent of the AutoSum but-

ton.

If you are in cell E99 and click the AutoSum button, Excel starts scanning from cell E98

upward until it locates a text cell, a blank cell, or a formula. It then proposes a formula that

sums everything between the current cell and the found cell.

However, the macro recorder records the particular result of that search on the day that

the macro was recorded. Rather than record something along the lines of “do the normal

AutoSum logic,” the macro recorder inserts a single line of code to add up the previous 98

cells.

The somewhat bizarre workaround is to type a SUM function that uses a mix of relative and

absolute row references. If you type =SUM(E$2:E10) while the macro recorder is running,

Excel correctly adds code that will always sum from a fixed row two down to the relative

reference that is just above the current cell.

Here is the resulting code with a few comments:

Sub FormatInvoice3()
‘
‘ FormatInvoice2 Macro
‘ Third try. Use relative. Don’t touch AutoSum
‘
‘ Keyboard Shortcut: Ctrl+Shift+K
‘
 Workbooks.OpenText Filename:=”C:\Users\Owner\Documents\invoice.txt”, Ori-
gin _
 :=437, StartRow:=1, DataType:=xlDelimited,
TextQualifier:=xlDoubleQuote _
 , ConsecutiveDelimiter:=False, Tab:=False, Semicolon:=False, Comma:= _
 True, Space:=False, Other:=False, FieldInfo:=Array(Array(1, 3), Ar-
ray(2, 1), _
 Array(3, 1), Array(4, 1), Array(5, 1), Array(6, 1), Array(7, 1)),
TrailingMinusNumbers _
 :=True
 ‘ Relative turned on here
 Selection.End(xlDown).Select
 ActiveCell.Offset(1, 0).Range(“A1”).Select
 ActiveCell.FormulaR1C1 = “Total”
 ActiveCell.Offset(0, 4).Range(“A1”).Select
 ‘ Don’t use AutoSum. Type this formula:
 Selection.FormulaR1C1 = “=SUM(R2C:R[-1]C)”
 Selection.AutoFill Destination:=ActiveCell.Range(“A1:C1”), Type:= _
 xlFillDefault
 ActiveCell.Range(“A1:C1”).Select
 ‘ Relative turned off here
 ActiveCell.Rows(“1:1”).EntireRow.Select
 ActiveCell.Activate

31Understanding Shortcomings of the Macro Recorder

 Selection.Font.Bold = True
 Cells.Select
 Selection.Columns.AutoFit
 Range(“A1”).Select
End Sub

This third macro will consistently work with any size dataset.

To see a demo of recording this macro, search for Excel VBA 1 at YouTube.

Three Tips When Using the Macro Recorder
You will rarely be able to record 100 percent of your macros and have them work. However,

you will get much closer by using these three tips demonstrated in the following subsec-

tions.

Tip 1: Use Relative References Setting Usually Needs to Be On

Microsoft should have made this setting be the default. Unless you specifically need to

move to Row 1 from the bottom of a dataset, you should usually leave the Use Relative

References button in the Developer tab turned on.

Tip 2: Use Special Navigation Keys to Move to Bottom of a Dataset

If you are at the top of a dataset and need to move to the last cell with data, you can press

Ctrl+down arrow or press the End key and then the down-arrow key.

Similarly, to move to the last column in the current row of the dataset, press Ctrl+right

arrow or press End and then press the right-arrow key.

By using these navigation keys, you can jump to the end of the dataset, no matter how

many rows or columns you have today.

Tip 3: Never Touch the AutoSum Icon While Recording a Macro

The macro recorder will not record the “essence” of the AutoSum button. Instead, it will

hard-code the formula that resulted from pressing the AutoSum button. This formula does

not work any time you have more or fewer records in the dataset.

Instead, type a formula with a single dollar sign, such as =SUM(E$2:E10). When this is done,

the macro recorder records the first E$2 as a fixed reference and starts the SUM range directly

below the Row 1 headings. Provided the active cell is E11, the macro recorder recognizes

E10 as a relative reference pointing directly above the current cell.

I Can’t Understand This Code
As mentioned previously, if you have taken a class in

a procedural language such as BASIC or COBOL,

you might be confused when you look at VBA

code. Even though VBA stands for Visual Basic for
Applications, it is an object-oriented version of BASIC.

Here is a bit of VBA code:

Selection.End(xlDown).Select
Range(“A11”).Select
ActiveCell.FormulaR1C1 = “Total”
Range(“E11”).Select
Selection.FormulaR1C1 = “=SUM(R[-9]C:R[-1] _
C)”
Selection.AutoFill
Destination:=Range(“E11:G11”),
Type:=xlFillDefault

This code likely makes no sense to anyone who

knows only procedural languages. Unfortunately,

your first introduction to programming in school

(assuming you are over 30 years old) would have

been a procedural language.

Here is a section of code written in the BASIC lan-

guage:

For x = 1 to 10
 Print Rpt$(“ “,x);
 Print “*”
Next x

If you run this code, you get a pyramid of asterisks

on your screen:

*
 *
 *
 *
 *
 *
 *
 *
 *
 *

This Sounds Like BASIC,
So Why Doesn’t It Look
Familiar? 2

Chapter 2 This Sounds Like BASIC, So Why Doesn’t It Look Familiar?34

If you have ever been in a procedural programming class, you can probably look at the code

and figure out what is going on because procedural languages are more English-like than

object-oriented languages. The statement Print “Hello World” follows the verb-object

format, which is how you would generally talk. Let’s step away from programming for a

second and think about a concrete example.

Understanding the Parts of VBA “Speech”
If you were going to write code for instructions to play soccer using BASIC, the instruction

to kick a ball would look something like this:

“Kick the Ball”

Hey—this is how you talk! It makes sense. You have a verb (kick) and then a noun (ball).

The BASIC code in the preceding section has a verb (print) and a noun (asterisk). Life is

good.

Here is the problem. VBA doesn’t work like this. In fact, no object-oriented language works

like this. In an object-oriented language, the objects (nouns) are most important, hence the

name: object-oriented. If you were going to write code for instructions to play soccer with

VBA, the basic structure would be as follows:

Ball.Kick

You have a noun (ball), which comes first. In VBA, this is an object. Then you have the verb

(kick), which comes next. In VBA, this is a method.

The basic structure of VBA is a bunch of lines of code where you have

Object.Method

Needless to say, this is not English. If you took a romance language in high school, you

will remember that those languages use a “noun adjective” construct. However, no one uses

“noun verb” to tell someone to do something:

Water.Drink
Food.Eat
Girl.Kiss

That is why VBA is confusing to someone who previously took a procedural programming

class.

Let’s carry the analogy a bit further. Imagine you walk onto a grassy field and there are five

balls in front of you. There is a soccer ball, basketball, baseball, bowling ball, and tennis

ball. You want to instruct the kid on your soccer team to “Kick the soccer ball.”

If you tell him to kick the ball (or ball.kick), you really aren’t sure which one of the five

balls he will kick. Maybe he will kick the one closest to him, which could be a problem if he

is standing in front of the bowling ball.

35Understanding the Parts of VBA “Speech”

For almost any noun, or object in VBA, there is a collection of that object. Think about

Excel. If you can have one row, you can have a bunch of rows. If you can have one cell, you

can have a bunch of cells. If you can have one worksheet, you can have a bunch of work-

sheets. The only difference between an object and a collection is that you will add an s to

the name of the object:

Row becomes Rows.

Cell becomes Cells.

Ball becomes Balls.

When you refer to something that is a collection, you have to tell the programming lan-

guage to which item you are referring. There are a couple of ways to do this. You can refer

to an item by using a number. For example, if the soccer ball is the second ball, you might

say this:

Balls(2).Kick

This works fine, but it could be a dangerous way to program. For example, it might work

on Tuesday. However, if you get to the field on Wednesday and someone has rearranged

the balls, Balls(2).Kick might be a painful exercise.

A much safer way to go is to use a name for the object in a collection. You can say the fol-

lowing:

Balls(“Soccer”).Kick

With this method, you always know that it will be the soccer ball that is being kicked.

So far, so good. You know a ball will be kicked, and you know it will be the soccer ball. For

most of the verbs, or methods in Excel VBA, there are parameters that tell how to do the

action. These parameters act as adverbs. You might want the soccer ball to be kicked to the

left and with a hard force. In this case, the method would have a number of parameters that

tell how the program should perform the method:

Balls(“Soccer”).Kick Direction:=Left, Force:=Hard

When looking at VBA code, the colon-equals combination indicates that you are looking at

parameters of how the verb should be performed.

Sometimes, a method will have a list of 10 parameters, some of which are optional. For

example, if the Kick method has an Elevation parameter, you would have this line of code:

Balls(“Soccer”).Kick Direction:=Left, Force:=Hard, Elevation:=High

Here is the confusing part. Every method has a default order for its parameters. If you are

not a conscientious programmer and you happen to know the order of the parameters, you

can leave off the parameter names. The following code is equivalent to the previous line of

code:

Balls(“Soccer”).Kick Left, Hard, High

Chapter 2 This Sounds Like BASIC, So Why Doesn’t It Look Familiar?36

This throws a monkey wrench into our understanding. Without the colon-equals, it is not

obvious that you have parameters. Unless you know the parameter order, you might not

understand what is being said. It is pretty easy with Left, Hard, and High, but when you

have parameters like the following:

Shapes.AddShape type:=1, Left:=10, Top:=20, Width:=100, Height:=200

it gets confusing to see

Shapes.AddShape 1, 10, 20, 100, 200

The preceding is valid code. However, unless you know that the default order of the param-

eters for this Add method is Type, Left, Top, Width, Height, this code will not make sense.

The default order for any particular method is the order of the parameters as shown in the

help topic for that method.

To make life more confusing, you are allowed to start specifying parameters in their default

order without naming them, and then switch to naming parameters when you hit one that

does not match the default order. If you want to kick the ball to the left and high, but do

not care about the force (you are willing to accept the default force), the following two

statements are equivalent:

Balls(“Soccer”).Kick Direction:=Left, Elevation:=High
Balls(“Soccer”).Kick Left, Elevation:=High

However, keep in mind that as soon as you start naming parameters, they have to be named

for the remainder of that line of code.

Some methods simply act on their own. To simulate pressing the F9 key, you use this code:

Application.Calculate

Other methods perform an action and create something. For example, you can add a work-

sheet using the following:

Worksheets.Add Before:=Worksheets(1)

However, because Worksheets.Add creates a new object, you can assign the results of this

method to a variable. In this case, you must surround the parameters with parentheses:

Set MyWorksheet = Worksheets.Add(Before:=Worksheets(1))

One final bit of grammar is necessary: adjectives. Just as adjectives describe a noun, proper-
ties describe an object. Because you are Excel fans, let’s switch from the soccer analogy to an

Excel analogy midstream. There is an object to describe the active cell. Fortunately, it has a

very intuitive name:

ActiveCell

Suppose you want to change the color of the active cell to yellow. There is a property called

InteriorColor for a cell that uses a complex series of codes. However, you can turn a cell to

yellow by using this code:

ActiveCell.Interior.ColorIndex = 6

37VBA Is Not Really Hard

You can see how this can be confusing. Again, there is the Noun-dot-Something construct,

but this time it is Object.Property rather than Object.Method. Telling them apart is quite

subtle—there is no colon before the equal sign. A property is almost always being set equal

to something, or perhaps the value of a property is being assigned to something else.

To make this cell color the same as cell A1, you might say this:

ActiveCell.Interior.ColorIndex = Range(“A1”).Interior.ColorIndex

Interior.ColorIndex is a property. By changing the value of a property, you can make

things look different. It is kind of bizarre—change an adjective, and you are actually doing

something to the cell. Humans would say, “Color the cell yellow,” whereas VBA says this:

ActiveCell.Interior.ColorIndex = 6

Table 2.1 summarizes the VBA “parts of speech.”

Table 2.1 Parts of the VBA Programming Language

VBA
Component

Analogous
To

Notes

Object Noun

Collection Plural
noun

Usually specifies which object: Worksheets(1).

Method Verb Object.Method.

Parameter Adverb Lists parameters after the method. Separate the parameter name from its
value with :=.

Property Adjective You can set a property activecell.height 10 or query the value of a prop-
erty x = activecell.height.

VBA Is Not Really Hard
Knowing whether you are dealing with properties or methods will help you set up the cor-

rect syntax for your code. Don’t worry if it all seems confusing right now. When you are

writing VBA code from scratch, it is tough to know whether the process of changing a cell

to yellow requires a verb or an adjective. Is it a method or a property?

This is where the beauty of the macro recorder comes in. When you don’t know how to

code something, you record a short little macro, look at the recorded code, and figure out

what is going on.

VBA Help Files: Using F1 to Find Anything
This is a radically cool feature, but you need to jump through a few hoops first. If you are

going to write VBA macros, you absolutely must have the VBA help topics installed. The

problem: The VBA help topics are not installed in the default Office install. Follow these

steps to see whether you have VBA help installed:

Chapter 2 This Sounds Like BASIC, So Why Doesn’t It Look Familiar?38

 1. Open Excel and switch to the VB Editor by pressing Alt+F11. From the Insert menu,

select Module (see Figure 2.1).

Figure 2.1
Insert a new module in
the blank workbook.

 2. Type the three lines of code shown in Figure 2.2. Click inside the word MsgBox.

Figure 2.2
Click inside the word
MsgBox and press F1.

 3. With the cursor in the word MsgBox, press F1. If the VBA help topics are installed, you

will see the help topic shown in Figure 2.3.

Figure 2.3
If the VBA help topics
have been installed, you
will get this screen.

However, if you get a message saying that help is not available on this topic, find the origi-

nal CDs (or get your network administrator to grant rights to the installation folder) so that

you can install the VBA help topics. Go through the process of doing a reinstall. During

reinstall, select the custom install and be sure to select the VBA help files.

39Examining Recorded Macro Code: Using the VB Editor and Help

Using Help Topics
If you request help on a function or method, the help topic walks you through the various

available arguments. If you browse to the bottom of the help topics, code samples are pro-

vided under the Example heading, which is a great resource (see Figure 2.4).

Figure 2.4
Most help topics include
code samples.

It is possible to select the code, copy it to the Clipboard by pressing Ctrl+C (see Figure

2.5), and then paste it into your module by pressing Ctrl+V.

After you record a macro, if there are objects or methods about which you are unsure, you

can get help by inserting the cursor in any keyword and pressing F1.

Figure 2.5
Highlight code in the help
file and copy with Ctrl+C.

Examining Recorded Macro Code: Using the VB Editor and Help
Let’s take a look at the code that you recorded in Chapter 1, “Unleash the Power of Excel with

VBA,” to see whether it makes more sense now in the context of objects, properties, and methods.

You can also see whether it’s possible to correct the errors brought about by the macro recorder.

Chapter 2 This Sounds Like BASIC, So Why Doesn’t It Look Familiar?40

Figure 2.6 shows the first code that Excel recorded in the example from Chapter 1.

Figure 2.6
Recorded code from the
example in Chapter 1.

Now that you understand the concept of Noun.Verb or Object.Method, consider the

first line of code that says Workbooks.OpenText. In this case, Workbooks is an object, while

OpenText is a method. Click your cursor inside the word OpenText and press F1 for an

explanation of the OpenText method (see Figure 2.7).

The help file confirms that OpenText is a method or an action word. The default order for

all the arguments that can be used with OpenText appears in the gray box. Notice that only

one argument is required: FileName. All the other arguments are listed as optional.

Figure 2.7
Help topic for the
OpenText method.

41Examining Recorded Macro Code: Using the VB Editor and Help

Optional Parameters
The help file can tell you if you happen to skip an optional parameter. For StartRow, the

help file indicates that the default value is 1. If you leave out the StartRow parameter, Excel

starts importing at Row 1. This is fairly safe.

Now look at the help file note about Origin. If this argument is omitted, you inherit what-

ever value was used for Origin the last time someone used this feature in Excel on this

computer. That is a recipe for disaster. For example, your code may work 98 percent of the

time. However, immediately after someone imports an Arabic file, Excel will remember the

setting for Arabic and assume this is what your macro wants if you don’t explicitly code this

parameter.

Defined Constants
Look at the help file entry for DataType in Figure 2.7, which says it can be one of these

constants: xlDelimited or xlFixedWidth. The help file says these are the valid xlTextPars-

ingType constants that are predefined in Excel VBA. In the VB Editor, press Ctrl+G to

bring up the Immediate window. In the Immediate window, type this line and press Enter:

Print xlFixedWidth

The answer appears in the Immediate window. xlFixedWidth is the equivalent of saying “2”

(see Figure 2.8). Ask the Immediate window to Print xlDelimited, which is really the same

as typing 1. Microsoft correctly assumes that it is easier for someone to read code that uses

the somewhat English-like term xlDelimited rather than 1.

Figure 2.8
In the Immediate window
of the VB Editor, query
to see the true value
of constants such as
xlFixedWidth.

If you were an evil programmer, you could certainly memorize all these constants and write

code using the numeric equivalents of the constants. However, the programming gods (and

the next person who has to look at your code) will curse you for this.

In most cases, the help file either specifically calls out the valid values of the constants or

offers a blue hyperlink that causes the help file to expand and show you the valid values for

the constants (see Figure 2.9).

To see a demo of defined constants, search for Excel VBA 2 at YouTube.

Chapter 2 This Sounds Like BASIC, So Why Doesn’t It Look Familiar?42

One complaint with this excellent help system is that it does not identify which parameters

may be new to a given version. In this particular case, TrailingMinusNumbers was introduced

in Excel 2002. If you attempt to give this program to someone who is still using Excel 2000,

the code will not run because it does not understand the TrailingMinusNumbers parameter.

Sadly, the only way to learn to handle this frustrating problem is through trial and error.

If you read the help topic on OpenText, you can surmise that it is basically the equivalent of

opening a file using the Text Import Wizard. In the first step of the wizard, you normally

choose either Delimited or Fixed Width. You also specify the File Origin and at which row

to start (see Figure 2.10). This first step of the wizard is handled by these parameters of the

OpenText method:

Origin:=437
StartRow:=1
DataType:=xlDelimited

Figure 2.9
Click the blue hyperlink to
see all the possible con-
stant values. Here, the 10
possible xlColumn-
DataType constants
are revealed in a new
help topic.

Figure 2.10
The first step of the Text
Import Wizard in Excel is
covered by three param-
eters of the OpenText
method.

43Examining Recorded Macro Code: Using the VB Editor and Help

Step 2 of the Text to Columns Wizard enables you to specify that your fields be delimited

by a comma. Because we do not want to treat two commas as a single comma, the Treat

Consecutive Delimiters as One check box is not selected. Sometimes, a field may contain

a comma, such as “XYZ, Inc.” In this case, the field should have quotes around the value,

as specified in the Text Qualifier box (see Figure 2.11). This second step of the wizard is

handled by the following parameters of the OpenText method:

TextQualifier:=xlDoubleQuote
ConsecutiveDelimiter:=False
Tab:=False
Semicolon:=False
Comma:=True
Space:=False
Other:=False

Figure 2.11
The second step Text
Import Wizard is handled
by the seven parameters
of the OpenText
method.

Step 3 of the wizard is where you actually identify the field types. In this case, you left all

fields as General except for the first field, which was marked as a date in MDY (Month,

Day, Year) format (see Figure 2.12). This is represented in code by the FieldInfo param-

eter.

Figure 2.12
The third step of the
Text Import Wizard is
fairly complex. The entire
FieldInfo param-
eter of the OpenText
method duplicates the
choices made on this step
of the wizard.

Chapter 2 This Sounds Like BASIC, So Why Doesn’t It Look Familiar?44

If you happen to click the Advanced button on the third step of the wizard, you have an

opportunity to specify something other than the default Decimal and Thousands separator,

as well as the setting for Trailing Minus for negative numbers (see Figure 2.13).

Note that the macro recorder does not write code for DecimalSeparator or

ThousandsSeparator unless you change these from the defaults. The macro recorder does always

record the TrailingMinusNumbers parameter.

T
IP

Every action that you perform in Excel while recording a macro gets translated to VBA

code. In the case of many dialog boxes, the settings that you do not change will often get

recorded along with the items that you do change. When you click OK to close the dialog,

the macro recorder often records all the current settings from the dialog in the macro.

Figure 2.13
The TrailingMinus
Numbers parameter
comes from the Advanced
Text Import Settings.
If you change either of
the separator fields, new
parameters are recorded
by the macro recorder.

Here is another example. The next line of code in the macro is this:

Selection.End(xlDown).Select

You can click to get help for three topics in this line of code: Selection, End, and Select.

Assuming that Selection and Select are somewhat self-explanatory, click in the word End

and press F1 for help. A Context Help dialog box appears, saying that there are two pos-

sible help topics for End—one in the Excel library and one in the VBA library (see Figure

2.14).

Figure 2.14
Sometimes you must
choose which help library
to use.

45Examining Recorded Macro Code: Using the VB Editor and Help

If you are new to VBA, you might not know which help library to select. Select one and

then click Help. In this case, the End help topic in the VBA library is talking about the End

statement (see Figure 2.15), which is not what you need.

Close Help, press F1 again, and select the End object in the Excel library. This help topic

says that End is a property. It returns a Range object that is equivalent to pressing End+Up

or End+Down in the Excel interface (see Figure 2.16). If you click the blue hyperlink for

xlDirection, you will see the valid parameters that can be passed to the End function.

Figure 2.15
If the help topic is not the
topic you need, it is easy
enough to try again.

Figure 2.16
The correct help topic for
the End property.

Chapter 2 This Sounds Like BASIC, So Why Doesn’t It Look Familiar?46

Properties Can Return Objects
Recall that the discussion at the start of this chapter said the basic syntax of VBA is Object.

Method. Consider the line of code currently under examination:

Selection.End(xlDown).Select

In this particular line of code, the method is Select. The End keyword is a property, but

from the help file, you see that it returns a Range object. Because the Select method can

apply to a Range object, the method is actually appended to a property.

Based on this information, you might assume that Selection is the object in this line of

code. If you click the mouse in the word Selection and press F1, you will see that accord-

ing to the help topic, Selection is actually a property and not an object. In reality, the

proper code would be to say Application.Selection. However, when you are running

within Excel, VBA assumes you are referring to the Excel object model, so you can leave off

the Application object. If you were to write a program in Word VBA to automate Excel,

you would be required to include an object variable before the Selection property to qual-

ify to which application you are referring.

In this case, the Application.Selection can return several different types of objects. If a

cell is selected, it returns the Range object.

Using Debugging Tools to Figure Out Recorded Code
This section introduces some awesome debugging tools that are featured in VB Editor.

These tools are excellent for helping you see what a recorded macro code is doing.

Stepping Through Code
Generally, a macro runs quickly—you start it, and less than a second later, it is done. If

something goes wrong, you do not have an opportunity to figure out what it is doing.

However, using Excel’s Step Into feature makes it possible to run one line of code at a time.

To use this feature, make sure your cursor is in the ImportInvoice procedure, and then from

the menu select Debug, Step Into, as shown in Figure 2.17. Alternatively, you can press F8.

Figure 2.17
Using the Step Into
feature allows you to run
a single line of code at
a time.

47Using Debugging Tools to Figure Out Recorded Code

The VB Editor is now in Break mode. The line about to be executed is highlighted in yel-

low with a yellow arrow in the margin before the code (see Figure 2.18).

Figure 2.18
The first line of the macro
is about to run.

In this case, the next line to be executed is the Sub ImportInvoice() line. This basically

says, “You are about to start running this procedure.” Press the F8 key to execute the line in

yellow and move to the next line of code. The long code for OpenText is then highlighted.

Press F8 to run this line of code. When you see that Selection.End(xlDown).Select is

highlighted, you know that Visual Basic has finished running the OpenText command. At

this point, you can press Alt+Tab to switch to Excel and see that the Invoice.txt file has

been parsed into Excel. Note that A1 is selected (see Figure 2.19).

Figure 2.19
The Excel window behind
the VBA Editor shows that
the Invoice.txt file
has been imported.

If you have a wide monitor, you can use the Restore Down icon at the top right of the VBA window to

arrange the window so that you can see both the VBA window and the Excel window.

This is also a great trick while recording new code. You can actually watch the code appear as you do

things in Excel.

T
IP

Chapter 2 This Sounds Like BASIC, So Why Doesn’t It Look Familiar?48

Switch back to the VB Editor by pressing Alt+Tab. The next line about to be executed

is Selection.End(xlDown).Select. Press F8 to run this code. Switch to Excel to see the

results. Now A10 is selected (see Figure 2.20).

Figure 2.20
Verify that the
End(xlDown).
Select command
worked as expected. This
is equivalent to pressing
the End key and then the
down arrow.

Press F8 again to run the Range(“A11”).Select line. If you switch to Excel by pressing

Alt+Tab, you will see that this is where the macro starts to have problems. Instead of mov-

ing to the first blank row, the program moved to the wrong row (see Figure 2.21).

Now that you have identified the problem area, you can stop the code execution by using

the Reset command. You can start the Reset command by either selecting Run, Reset or by

clicking the Reset button on the toolbar (see Figure 2.22). After clicking Reset, you should

return to Excel and undo anything done by the partially completed macro. In this case, you

need to close the Invoice.txt file without saving.

Figure 2.21
The recorded macro code
blindly moves to Row 11
for the Total row.

49Using Debugging Tools to Figure Out Recorded Code

More Debugging Options: Breakpoints
If you have hundreds of lines of code, you might not want to step through each line one at

a time. If you have a general idea that the problem is happening in one particular section

of the program, you can set a breakpoint. You can then have the code start to run, but the

macro breaks just before it executes the breakpoint line of code.

To set a breakpoint, click in the gray margin area to the left of the line of code on which

you want to break. A large brown dot appears next to this code, and the line of code is

highlighted in brown (see Figure 2.23). (If you don’t see the margin area, go to Tools,

Options, Editor Format and choose Margin Indicator Bar).

Figure 2.22
The Reset button in the
toolbar stops a macro
that is in Break mode.

Figure 2.23
The large brown dot sig-
nifies a breakpoint.

Next, from the Start menu select Run, Run Sub or press F5. The program executes but

stops just before the breakpoint. The VB Editor shows the breakpoint line highlighted in

yellow. You can now press F8 to begin stepping through the code (see Figure 2.24).

After you have finished debugging your code, remove the breakpoints by clicking the dark

brown dot in the margin to toggle off the breakpoint. Alternatively, you can select Debug,

Clear All Breakpoints or press Ctrl+Shift+F9 to clear all breakpoints that you set in the

project.

Figure 2.24
The yellow line signifies
that the breakpoint line is
about to be run.

Backing Up or Moving Forward in Code
When you are stepping through code, you might want to jump over some lines of code, or

you might have corrected some lines of code that you want to run again. This is easy to do

when you are working in Break mode. One favorite method is to use the mouse to grab the

yellow arrow. The cursor changes to an icon, which means you can move the next line up

Chapter 2 This Sounds Like BASIC, So Why Doesn’t It Look Familiar?50

or down. Drag the yellow line to whichever line you want to execute next (see Figure 2.25).

The other option is to right-click the line to which you want to jump, and then select Set

Next Statement.

Figure 2.25
The cursor as it appears
when dragging the yel-
low line to a different line
of code to be executed
next.

Not Stepping Through Each Line of Code
When you are stepping through code, you might want to run a section of code without

stepping through each line, such as when you get to a loop. You might want VBA to run

through the loop 100 times, so you can step through the lines after the loop. It is particu-

larly monotonous to press the F8 key hundreds of times to step through a loop. Instead,

click the cursor on the line you want to step to and press Ctrl+F8 or select Debug, Run to

Cursor.

Querying Anything While Stepping Through Code
Even though variables have not yet been discussed, you can query the value of anything

while in Break mode. However, keep in mind that the macro recorder never records a vari-

able.

Using the Immediate Window

Press Ctrl+G to display the Immediate window in the VB Editor. While the macro is in

Break mode, ask the VB Editor to tell you the currently selected cell, the name of the active

sheet, or the value of any variable. Figure 2.26 shows several examples of queries typed into

the Immediate window.

Figure 2.26
Queries and their answers
that can be typed into the
Immediate window while
a macro is in Break mode.

Instead of typing Print, you can type a question mark: ?Selection.Address. Read the ques-

tion mark as “What is.”

51Using Debugging Tools to Figure Out Recorded Code

When invoked with Ctrl+G, the Immediate window usually appears at the bottom of the

Code window. You can use the resize handle, which is located above the blue Immediate

title bar, to make the Immediate window larger or smaller (see Figure 2.27).

Figure 2.27
Resizing the Immediate
window.

There is a scrollbar on the side of the Immediate window that can be used to scroll back-

ward or forward through past entries in the Immediate window.

It is not necessary to run queries only at the bottom of the Immediate window. For exam-

ple, if you have just run one line of code, in the Immediate window you can ask for the

Selection.Address to ensure that this line of code worked (see Figure 2.28).

Figure 2.28
The Immediate win-
dow shows the results
before the current line is
executed.

Press the F8 key to run the next line of code. Instead of retyping the same query, click in

the Immediate window at the end of the line containing the last query (see Figure 2.29).

Figure 2.29
Place the cursor at the
end of the previous com-
mand and press Enter to
avoid typing the same
commands over in the
Immediate window.

Press Enter, and the Immediate window runs this query again, displaying the results on the

next line and pushing the old results farther down the window. In this case, the selected

address is $11:$11. The previous answer, E11:G11, is pushed down the window (see

Figure 2.30).

Chapter 2 This Sounds Like BASIC, So Why Doesn’t It Look Familiar?52

Press F8 four more times to run through the line of code with Cells.Select. Again, posi-

tion the cursor in the Immediate window just after Print Selection.Address and press

Enter. The query is run again, and the most recent address is shown with the prior answers

moved down in the Immediate window (see Figure 2.31).

Figure 2.30
The prior answer
(E11:G11)
is shifted down, and
the current answer
($11:$11) appears
below the query.

Figure 2.31
After selecting all cells
with Cells.Select,
place the cursor after the
query in the Immediate
window and press Enter.
The new answer is that
the selected range is all
rows from 1 to 1,084,576.

You can also use this method to change the query by clicking to the right of the word

Address in the Immediate window. Press the Backspace key to erase the word Address and

instead type Rows.Count. Press Enter, and the Immediate window shows the number of rows

in the selection (see Figure 2.32).

Figure 2.32
Delete part of a query,
type something new, and
press Enter. The previ-
ous answers are pushed
down, and the current
answer is displayed.

This is an excellent technique to use when you are trying to figure out a sticky bit of code.

For example, you can query the name of the active sheet (Print Activesheet.Name), the

selection (Print Selection.Address), the active cell (Print ActiveCell.Address), the

formula (Print ActiveCell.Formula) in the active cell, the value of the active cell (Print

ActiveCell.Value, or Print ActiveCell because Value is the default property of a cell), and

so on.

53Using Debugging Tools to Figure Out Recorded Code

To dismiss the Immediate window, click the X in the upper-right corner of the Immediate

window.

Ctrl+G does not toggle the window on and off. Use the X at the top right of the Immediate window to

close it.

N
O

T
E

Querying by Hovering

In many instances, you can hover the cursor over an expression in the code, and then wait

a second for a ToolTip to be displayed that shows the current value of the expression. This

is an invaluable tool when you get to looping in Chapter 5, “Looping and Flow Control.”

It will also come in handy with recorded code. Note that the expression that you hover

over does not have to be in the line of code just executed. In Figure 2.33, Visual Basic

just selected Row 1, making A1 the ActiveCell. If you hover the cursor over ActiveCell.

Formula, you will get a ToolTip showing that the formula in the ActiveCell is the word

InvoiceDate.

Figure 2.33
Hover the mouse cursor
over any expression for
a few seconds, and a
ToolTip shows the current
value of the expression.

Sometimes the VBA window seems to not respond to hovering. Because some expressions

are not supposed to show a value, it is difficult to tell whether VBA is not displaying the

value on purpose or whether you are in the buggy “not responding” mode. Try hovering

over something that you know should respond, such as a variable. If you get no response,

hover, click into the variable, and continue to hover. This tends to wake Excel up from the

stupor, and hovering will work again.

Are you impressed yet? This chapter started by complaining that this didn’t seem much like

BASIC. However, by now you have to admit that the Visual Basic environment is great to

work in and that the debugging tools are excellent.

Querying by Using a Watch Window

In Visual Basic, a watch is not something you wear on your wrist; instead, it allows you to

watch the value of any expression while you step through code. Let’s say that in the current

example, you want to watch to see what is selected as the code runs. You can do this by set-

ting up a watch for Selection.Address.

From the VB Editor Debug menu, select Add Watch. In the Add Watch dialog, enter

Selection.Address in the Expression text box and click OK (see Figure 2.34).

Chapter 2 This Sounds Like BASIC, So Why Doesn’t It Look Familiar?54

A Watches window is added to the busy Visual Basic window, usually at the bottom of the

code window. When you start running the macro, import the file and press End+Down to

move to the last row with data. Right after the End(xlDown) code is executed, the Watches

window shows that Selection.Address is A10 (see Figure 2.35).

Figure 2.34
Setting up a watch to see
the address of the current
selection.

Figure 2.35
Without having to hover
or type in the Immediate
window, you can always
see the value of watched
expressions.

Press the F8 key to run the code Range(“A11”).Select. The Watches window is updated to

show the current address of the Selection is now A11 (see Figure 2.36).

Figure 2.36
After running another line
of code, the value in the
Watches window updates
to indicate the address of
the new selection.

In the Watch window, the value column is read/write (where possible)! You can type a new value here

and see it change on the worksheet.

N
O

T
E

55Using Debugging Tools to Figure Out Recorded Code

Using a Watch to Set a Breakpoint
Right-click any line in the Watches window and select Edit Watch. In the Watch Type sec-

tion of the Edit Watch dialog, select Break When Value Changes (see Figure 2.37). Click

OK.

Figure 2.37
Select Break When Value
Changes in the bottom of
the Edit Watch dialog.

The glasses icon has changed to a hand with triangle icon. You can now press F5 to run the

code. The macro starts running lines of code until something new is selected. This is very

powerful. Instead of having to step through each line of code, you can now conveniently

have the macro stop only when something important has happened. A watch can also be set

up to stop when the value of a particular variable changes.

Using a Watch on an Object
In the preceding example, you watched a specific property: Selection.Address. It is also

possible to watch an object such as Selection. In Figure 2.38, when a watch has been set up

on Selection, you get the glasses icon and a + icon.

Figure 2.38
Setting a watch on an
object gives you a + icon
next to the glasses.

By clicking the + icon, you can see all the properties associated with Selection. When you

look at Figure 2.39, you can see more than you ever wanted to know about Selection!

There are properties that you probably never realized were available. You can also see that

the AddIndent property is set to False and the AllowEdit property is set to True. There are

useful properties in the list—you can see the Formula of the selection.

In this Watches window, some entries can be expanded. For example, the Borders collection

has a plus next to it, which means that you can click any + icon to see more details.

Chapter 2 This Sounds Like BASIC, So Why Doesn’t It Look Familiar?56

Object Browser: The Ultimate Reference
In the VB Editor, press F2 to open the Object Browser, which lets you browse and search

the entire Excel object library (see Figure 2.40). A 409-page book is available that is a

reprint of this entire object model from the Object Browser. However, you do not need this

book because the built-in Object Browser is much more powerful and always available at

the touch of F2. The next few pages will teach you how to use the Object Browser.

Press F2 and the Object Browser appears where the code window normally appears. The

topmost drop-down currently shows <All Libraries>. There is an entry in this drop-down

for Excel, Office, VBA, each workbook that you have open, plus additional entries for any-

thing that you check in Tools, References. For now, go to the drop-down and select only

Excel.

In the left window of the Object Browser is a list of all classes available for Excel. Click the
Application class in the left window. The right window adjusts to show all properties and

methods that apply to the Application object (see Figure 2.41). Click something in the

right window, such as ActiveCell. The bottom window of the Object Browser tells you that

ActiveCell is a property that returns a range. It also tells you that ActiveCell is read-only

(an alert that you cannot assign an address to ActiveCell to move the cell pointer).

You have learned from the Object Browser that ActiveCell returns a range. When you

click the green hyperlink for Range in the bottom window, you will see all the properties

and methods that apply to Range objects and, hence, to the ActiveCell property. Click any

property or method, and then click the yellow question mark near the top of the Object

Browser to go to the help topic for that property or method.

Type any term in the text box next to the binoculars, and click the binoculars to find all

matching members of the Excel library.

Figure 2.39
Clicking the + icon shows
a plethora of properties
and their current values.

57Object Browser: The Ultimate Reference

Methods appear as green books with speed lines. Properties appear as index cards with a

hand pointing to them.

The search capabilities and hyperlinks available in the Object Browser make it much more

valuable than an alphabetic printed listing of all of the information. Learn to make use of

the Object Browser in the VBA window by pressing F2. To close the Object Browser and

return to your code window, click the lower X in the upper-right corner (see Figure 2.41).

Figure 2.40
Press F2 to display the
Object Browser.

Click X to Close
Figure 2.41
Select a class, and then a
member. The bottom win-
dow tells you the basics
about the particular
member.

Chapter 2 This Sounds Like BASIC, So Why Doesn’t It Look Familiar?58

Seven Tips for Cleaning Up Recorded Code
At this point, you have two tips for recording code from Chapter 1. So far, this chapter has

covered how to understand the recorded code, how to access VBA help for any word, and

how to use the excellent VBA debugging tools to step through your code. The remainder of

this chapter presents seven tips to use when cleaning up recorded code.

Tip 1: Don’t Select Anything
Nothing screams “recorded code” more than having code that selects things before acting

upon them. This makes sense—in the Excel interface, you have to select Row 1 before you

can make it bold.

However, this is done rarely in VBA. There are a couple exceptions to this rule. For exam-

ple, you need to select a cell when setting up a formula for conditional formatting. It is pos-

sible to directly turn on bold font to Row 1 without selecting it. The following two lines of

code turn into one line.

Macro recorder code before being streamlined:

Cells.Select
Selection.Columns.AutoFit

After streamlining the recorded code

Cells.Columns.AutoFit

There are a couple of advantages to this method. First, there will be half as many lines of

code in your program. Second, the program will run faster.

After recording code, highlight literally from before the word Select at the end of one

line all the way to the dot after the word Selection on the next line and press Delete (see

Figures 2.42 and 2.43).

Figure 2.42
Select from here to here...

Figure 2.43
...and press the Delete
key. This is basic “101”
of cleaning up recorded
macros.

59Seven Tips for Cleaning Up Recorded Code

Tip 2: Cells(2,5) Is More Convenient Than Range(“E2”)
The macro recorder uses the Range() property frequently. If you follow the macro record-

er’s example, you will find yourself building a lot of complicated code. For example, if you

have the row number for the total row stored in a variable, you might try to build this code:

Range(“E” & TotalRow).Formula = “=SUM(E2:E” & TotalRow-1 & “)”

In this code, you are using concatenation to join the letter E with the current value of the

TotalRow variable. This works, but eventually you will have to refer to a range where the

column is stored in a variable. Say that FinalCol is 10, which indicates Column J. To refer

to this column in a Range command, you need to do something like this:

FinalColLetter = MID(“ABCDEFGHIJKLMNOPQRSTUVWXYZ”,FinalCol,1)
Range(FinalColLetter & “2”).Select

Alternatively, perhaps you could do something like this:

FinalColLetter = CHR(64 + FinalCol)
Range(FinalColLetter & “2”).Select

These approaches work for the first 26 columns but fail for the remaining 99.85 percent of

the columns.

You could start to write 10-line functions to calculate that the column letter for column

15896 is WMJ, but it is not necessary. Instead of using Range(“WMJ17”), you can use the

Cells(Row,Column) syntax.

Chapter 3, “Referring to Ranges,” covers this in complete detail. However, for now you

need to understand that Range(“E10”) and Cells(10, 5) both point to the cell at the inter-

section of the fifth column and tenth row. Chapter 3 also shows you how to use .Resize to

point to a rectangular range. Cells(11, 5).Resize(1, 3) is E11:G11.

Tip 3: Ride the Range from the Bottom to Find Last Row
It is difficult to trust data from just anywhere. If you are analyzing data in Excel, remember

that the data can come from “who knows what” system written “who knows how long ago.”

The universal truth is that eventually some clerk will find a way to break the source system

and enter a record without an invoice number. Maybe it will take a power failure to do it,

but invariably, you cannot count on having every cell filled in.

This is a problem when using the End+Down shortcut. This key combination does not take

you to the last row with data in the worksheet. It takes you to the last row with data in the

current range. In Figure 2.44, pressing End+Down would move the cursor to cell A5 rather

than cell A10.

Chapter 2 This Sounds Like BASIC, So Why Doesn’t It Look Familiar?60

The better solution is to start at the bottom of the Excel worksheet and press End+Up.

This may seem silly in the Excel interface because it is easy to see whether you are at the

end of the data. However, because it is easy in Excel VBA to start at the last row, get in the

habit of using this code to find the true last row:

Cells(Rows.Count, 1).End(xlUp)

From 1995 through 2006, Excel worksheets featured 65,536 rows. In the prior edition of this book, the

coding style was to use Range(“A65536”).End(xlUp) to find the last row. With the expansion

to 1,048,576 rows, you might be tempted to use Range(“A1048576”).End(xlUp) in Excel 2010.

However, you cannot assume that your worksheet will have 1,048,576 rows. Someone might open an

.xls file in Compatibility mode, and there will be only 65,536 rows. If someone else runs your macro in

Excel 2003, there will be only 65,536 rows.

The solution is to use Rows.Count to return the number of rows in the active workbook. This covers

the possibility that the workbook is in Compatibility mode or that someone is running the code in Excel

2003.

N
O

T
E

Tip 4: Use Variables to Avoid Hard-Coding Rows and Formulas
The macro recorder never records a variable. Variables are easy to use, but just as in

BASIC, a variable can remember a value. Variables are discussed in more detail in

Chapter 5.

It is recommended that you set the last row with data to a variable. Be sure to use meaning-

ful variable names such as FinalRow:

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

Now that you know the row number of the last record, put the word Total in Column A of

the next row:

Cells(FinalRow + 1, 1).Value = “Total”

Figure 2.44
End+Down fails in the
user interface if a record is
missing a value. Similarly,
End(xlDown) fails in
Excel VBA.

61Seven Tips for Cleaning Up Recorded Code

You can even use the variable when building the formula. This formula totals everything

from E2 to the FinalRow of E:

Cells(FinalRow + 1, 5).Formula = “=SUM(E2:E” & FinalRow & “)”

Tip 5: R1C1 Formulas That Make Your Life Easier
The macro recorder often writes formulas in an arcane R1C1 style. However, most people

change the code back to use a regular A1-style formula. After reading Chapter 6, “R1C1-

Style Formulas,” you will understand there are times when you can build an R1C1 formula

that is much simpler than the corresponding A1-style formula. By using an R1C1 formula,

you can add totals to all three cells in the Total row with the following:

Cells(FinalRow+1, 5).Resize(1, 3).FormulaR1C1 = “=SUM(R2C:R[-1]C)”

Tip 6: Learn to Copy and Paste in a Single Statement
Recorded code is notorious for copying a range, selecting another range, and then doing an

ActiveSheet.Paste. The Copy method as it applies to a range is actually much more power-

ful. You can specify what to copy and specify the destination in one statement.

Recorded code:

Range(“E14”).Select
Selection.Copy
Range(“F14:G14”).Select
ActiveSheet.Paste

Better code:

Range(“E14”).Copy Destination:=Range(“F14:G14”)

Tip 7: Use With...End With to Perform Multiple Actions
If you were going to make the total row bold, double underline, with a larger font and a

special color, you might get recorded code like this:

Range(“A14:G14”).Select
Selection.Font.Bold = True
Selection.Font.Size = 12
Selection.Font.ColorIndex = 5
Selection.Font.Underline = xlUnderlineStyleDoubleAccounting

For four of those lines of code, VBA must resolve the expression Selection.Font. Because

you have four lines that all refer to the same object, you can name the object once at the

top of a With block. Inside the With...End With block, everything that starts with a period

is assumed to refer to the With object:

With Range(“A14:G14”).Font
 .Bold = True
 .Size = 12
 .ColorIndex = 5
 .Underline = xlUnderlineStyleDoubleAccounting
End With

Chapter 2 This Sounds Like BASIC, So Why Doesn’t It Look Familiar?62

Changing the Recorded Code
Using the seven tips discussed in the previous section, you can convert the recorded code into efficient, professional-

looking code. Here is the code as recorded by the macro recorder at the end of Chapter 1:

Sub FormatInvoice3()
‘
‘ FormatInvoice3 Macro
‘ Third try. Use relative. Don’t touch AutoSum
‘
‘ Keyboard Shortcut: Ctrl+Shift+K
‘
 Workbooks.OpenText Filename:=”C:\Users\Owner\Documents\invoice.txt”, Origin _
 :=437, StartRow:=1, DataType:=xlDelimited, TextQualifier:=xlDoubleQuote _
 , ConsecutiveDelimiter:=False, Tab:=False, Semicolon:=False, Comma:= _
 True, Space:=False, Other:=False, FieldInfo:=Array(Array(1, 3), _
 Array(2, 1), _
 Array(3, 1), Array(4, 1), Array(5, 1), Array(6, 1), Array(7, 1)), _
 TrailingMinusNumbers _
 :=True
 ‘ Relative turned on here
 Selection.End(xlDown).Select
 ActiveCell.Offset(1, 0).Range(“A1”).Select
 ActiveCell.FormulaR1C1 = “Total”
 ActiveCell.Offset(0, 4).Range(“A1”).Select
 ‘ Don’t use AutoSum. Type this formula:
 Selection.FormulaR1C1 = “=SUM(R2C:R[-1]C)”
 Selection.AutoFill Destination:=ActiveCell.Range(“A1:C1”), Type:= _
 xlFillDefault
 ActiveCell.Range(“A1:C1”).Select
 ‘ Relative turned off here
 ActiveCell.Rows(“1:1”).EntireRow.Select
 ActiveCell.Activate
 Selection.Font.Bold = True
 Cells.Select
 Selection.Columns.AutoFit
 Range(“A1”).Select
End Sub

Follow these steps to clean up the macro:

 1. The Workbook.OpenText lines are fine as recorded.

 2. The following lines of code attempt to locate the final row of data so the program knows where to enter the total

row:

Selection.End(xlDown).Select

You do not need to select anything to find the last row. It also helps to assign the row number of the final row and

the total row to a variable so they can be used later. To handle the unexpected case where a single cell in Column A

is blank, start at the bottom of the worksheet and go up to find the last used row:

‘ Find the last row with data. This might change every day
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
TotalRow = FinalRow + 1

C A S E S T U D Y : P U T T I N G I T A L L T O G E T H E R : F I X I N G T H E R E C O R D E D C O D E

63Seven Tips for Cleaning Up Recorded Code

 3. These lines of code enter the word Total in Column A of the Total row:

Range(“A14”).Select

 ActiveCell.FormulaR1C1 = “’Total”

The better code will use the TotalRow variable to locate where to enter the word Total. Again, there is no need to

select the cell before entering the label:

‘ Build a Total row below this
Range(“A” & TotalRow).Value = “Total”

 4. These lines of code enter the Total formula in Column E and copy it to the next two columns:

Range(“E14”).Select
Selection.FormulaR1C1 = “=SUM(R[-12]C:R[-1]C)”
Selection.AutoFill Destination:=Range(“E14:G14”), Type:=xlFillDefault
Range(“E14:G14”).Select

There is no reason to do all this selecting. The following line enters the formula in three cells. The R1C1 style of for-

mulas is discussed in Chapter 6:

Range(“E” & TotalRow).Resize(1, 3).FormulaR1C1 = “=SUM(R2C:R[-1]C)”

 5. The macro recorder selects a range and then applies formatting:

Rows(“1:1”).Select
Selection.Font.Bold = True
Rows(“14:14”).Select
Selection.Font.Bold = True

There is no reason to select before applying the formatting. These two lines perform the same action and do it much

quicker:

Rows(“1:1”).Font.Bold = True
Rows(TotalRow & “:” & TotalRow).Font.Bold = True

 6. The macro recorder selects all cells before doing the AutoFit command:

Cells.Select
Selection.Columns.AutoFit

There is no need to select the cells before doing the

AutoFit:Cells.Columns.AutoFit

 7. The macro recorder adds a short description to the top of each macro:

‘ ImportInvoice Macro

Now that you have changed the recorded macro code into something that will actually work, feel free to add your

name as author to the description and mention what the macro will do:

‘ ImportInvoice Macro
‘ Written by Bill Jelen This macro will import invoice.txt and add totals.

Here is the final macro with the changes:

Sub ImportInvoiceFixed()
‘
‘ ImportInvoice Macro
‘ Written by Bill Jelen This macro will import invoice.txt and add totals.
‘
‘ Keyboard Shortcut: Ctrl+i
‘

Chapter 2 This Sounds Like BASIC, So Why Doesn’t It Look Familiar?64

 Workbooks.OpenText Filename:= _
 “C:\invoice.txt”, Origin _
 :=437, StartRow:=1, DataType:=xlDelimited, _
 TextQualifier:=xlDoubleQuote _
 , ConsecutiveDelimiter:=False, Tab:=True, Semicolon:=False, _
 Comma:=True _
 , Space:=False, Other:=False, FieldInfo:=Array(Array(1, 3), _
 Array(2, 1), _
 Array(3, 1), Array(4, 1), Array(5, 1), Array(6, 1), Array(7, 1)), _
 TrailingMinusNumbers:=True
 ‘ Find the last row with data. This might change every day
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
 TotalRow = FinalRow + 1
 ‘ Build a Total row below this
 Range(“A” & TotalRow).Value = “Total”
 Range(“E” & TotalRow).Resize(1, 3).FormulaR1C1 = “=SUM(R2C:R[-1]C)”
 Rows(“1:1”).Font.Bold = True
 Rows(TotalRow & “:” & TotalRow).Font.Bold = True
 Cells.Columns.AutoFit
End Sub

A range can be a cell, row, column, or a grouping of

any of these. The RANGE object is probably the most

frequently used object in Excel VBA—after all, you

are manipulating data on a sheet. Although a range

can refer to any grouping of cells on a sheet, it can

refer to only one sheet at a time. If you want to

refer to ranges on multiple sheets, you must refer to

each sheet separately.

This chapter shows you different ways of referring

to ranges such as specifying a row or column. You

also will learn how to manipulate cells based on

the active cell and how to create a new range from

overlapping ranges.

The Range Object
The following is the Excel object hierarchy:

Application > Workbook > Worksheet > Range

The Range object is a property of the Worksheet

object. This means it requires that a sheet be active

or it must reference a worksheet. Both of the fol-

lowing lines mean the same thing if Worksheets(1)

is the active sheet:

Range(“A1”)
Worksheets(1).Range(“A1”)

There are several ways to refer to a Range object.

Range(“A1”) is the most identifiable because that is

how the macro recorder refers to it. However, each

of the following is equivalent when referring to a

range:

Range(“D5”)
[D5]
Range(“B3”).Range(“C3”)
Cells(5,4)
Range(“A1”).Offset(4,3)
Range(“MyRange”) ‘assuming that D5 has a
Name ‘of MyRange

Referring to Ranges

3

Chapter 3 Referring to Ranges66

Which format you use depends on your needs. Keep reading—it will all make sense soon!

Syntax to Specify a Range
The Range property has two acceptable syntaxes. To specify a rectangular range in the first

syntax, specify the complete range reference just as you would in a formula in Excel:

Range(“A1:B5”).Select

In the alternative syntax, specify the upper-left corner and lower-right corner of the desired

rectangular range. In this syntax, the equivalent statement might be this:

Range(“A1”, “B5”).Select

For either corner, you can substitute a named range, the Cells property, or the ActiveCell

property. The following line of code selects the rectangular range from A1 to the active

cell:

Range(“A1”, ActiveCell).Select

The following statement selects from the active cell to five rows below the active cell and

two columns to the right:

Range(ActiveCell, ActiveCell.Offset(5, 2)).Select

Named Ranges
You probably have already used named ranges on your worksheets and in formulas. You can

also use them in VBA.

Use the following code to refer to the range “MyRange” in Sheet1:

Worksheets(“Sheet1”).Range(“MyRange”)

Notice that the name of the range is in quotes—unlike the use of named ranges in formulas

on the sheet itself. If you forget to put the name in quotes, Excel thinks you are referring to

a variable in the program. One exception is if you use the shortcut syntax discussed in the

next section. In this case, quotes are not used.

Shortcut for Referencing Ranges
A shortcut is available when referencing ranges. The shortcut uses square brackets, as

shown in Table 3.1.

Table 3.1 Shortcuts for Referencing Ranges

Standard Method Shortcut

Range(“D5”) [D5]

Range(“A1:D5”) [A1:D5]

67Referencing Ranges in Other Sheets

Standard Method Shortcut

Range (“A1:D5,” “G6:I17”) [A1:D5, G6:I17]

Range(“MyRange”) [MyRange]

Referencing Ranges in Other Sheets
Switching between sheets by activating the needed sheet can dramatically slow down your

code. To avoid this slowdown, you can refer to a sheet that is not active by first referencing

the Worksheet object:

Worksheets(“Sheet1”).Range(“A1”)

This line of code references Sheet1 of the active workbook even if Sheet2 is the active

sheet.

If you need to reference a range in another workbook, include the Workbook object, the

Worksheet object, and then the Range object:

Workbooks(“InvoiceData.xlsx”).Worksheets(“Sheet1”).Range(“A1”)

Be careful if you use the Range property as an argument within another Range property. You

must identify the range fully each time. For example, suppose that Sheet1 is your active

sheet and you need to total data from Sheet2:

WorksheetFunction.Sum(Worksheets(“Sheet2”).Range(Range(“A1”), Range(“A7”)))

This line does not work. Why not? Because Range(Range(“A1”), Range(“A7”)) refers to an

extra range at the beginning of the code line. Excel does not assume that you want to carry

the Worksheet object reference over to the other Range objects. So what do you do? Well,

you could write this:

WorksheetFunction.Sum(Worksheets(“Sheet2”).Range(Worksheets(“Sheet2”). _
 Range(“A1”), Worksheets(“Sheet2”).Range(“A7”)))

But this is not only a long line of code, it is difficult to read! Thankfully, there is a simpler

way, using With...End With:

With Worksheets(“Sheet2”)
 WorksheetFunction.Sum(.Range(.Range(“A1”), .Range(“A7”)))
End With

Notice now that there is a .Range in your code, but without the preceding object reference.

That’s because With Worksheets(“Sheet2”) implies that the object of the range is the work-

sheet.

Chapter 3 Referring to Ranges68

Referencing a Range Relative to Another Range
Typically, the RANGE object is a property of a worksheet. It is also possible to have RANGE be

the property of another range. In this case, the Range property is relative to the original

range, which makes for unintuitive code. Consider this example:

Range(“B5”).Range(“C3”).Select

This code actually selects cell D7. Think about cell C3, which is located two rows below

and two columns to the right of cell A1. The preceding line of code starts at cell B5. If we

assume that B5 is in the A1 position, VBA finds the cell that would be in the C3 position

relative to B5. In other words, VBA finds the cell that is two rows below and two columns

to the right of B5, which is D7.

Again, I consider this coding style to be very unintuitive. This line of code mentions two

addresses, and the actual cell selected is neither of these addresses! It seems misleading

when you are trying to read this code.

You might consider using this syntax to refer to a cell relative to the active cell. For exam-

ple, the following line of code activates the cell three rows down and four columns to the

right of the currently active cell:

Selection.Range(“E4”).Select

This syntax is mentioned only because the macro recorder uses it. Recall that when you

recorded a macro in Chapter 1, “Unleash the Power of Excel with VBA,” with Relative

References on, the following line was recorded:

ActiveCell.Offset(0, 4).Range(“A2”).Select

This line found the cell four columns to the right of the active cell, and from there it

selected the cell that would correspond to A2. This is not the easiest way to write code, but

that is the way the macro recorder does it.

Although a worksheet is usually the object of the Range property, occasionally, such as dur-

ing recording, a range may be the property of a range.

Use the Cells Property to Select a Range
The Cells property refers to all the cells of the specified range object, which can be a work-

sheet or a range of cells. For example, this line selects all the cells of the active sheet:

Cells.Select

Using the Cells property with the Range object might seem redundant:

Range(“A1:D5”).Cells

This line refers to the original Range object. However, the Cells property has an Item prop-

erty that makes the Cells property very useful. The Item property enables you to refer to a

specific cell relative to the Range object.

69Use the Offset Property to Refer to a Range

The syntax for using the Item property with the Cells property is as follows:

Cells.Item(Row,Column)

You must use a numeric value for Row, but you may use the numeric value or string value for

Column. Both of the following lines refer to cell C5:

Cells.Item(5,”C”)
Cells.Item(5,3)

Because the Item property is the default property of the RANGE object, you can shorten these

lines as follows:

Cells(5,”C”)
Cells(5,3)

The ability to use numeric values for parameters is particularly useful if you need to loop

through rows or columns. The macro recorder usually uses something like Range(“A1”).

Select for a single cell and Range(“A1:C5”).Select for a range of cells. If you are learning

to code only from the recorder, you might be tempted to write code like this:

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
For i = 1 to FinalRow
 Range(“A” & i & “:E” & i).Font.Bold = True
Next i

This little piece of code, which loops through rows and bolds the cells in Columns A

through E, is awkward to read and write. But, how else can you do it?

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
For i = 1 to FinalRow
 Cells(i,”A”).Resize(,5).Font.Bold = True
Next i

Instead of trying to type the range address, the new code uses the Cells and Resize proper-

ties to find the required cell, based on the active cell.

Using the Cells Property in the Range Property
Cells properties can be used as parameters in the Range property. The following refers to

the range A1:E5:

Range(Cells(1,1),Cells(5,5))

This is particularly useful when you need to specify your variables with a parameter, as in

the previous looping example.

Use the Offset Property to Refer to a Range
You have already seen a reference to Offset when the macro recorder used it when you

recorded a relative reference. Offset enables you to manipulate a cell based off the location

of the active cell. In this way, you do not need to know the address of a cell.

The syntax for the Offset property is as follows:

Range.Offset(RowOffset, ColumnOffset)

Chapter 3 Referring to Ranges70

The syntax to affect cell F5 from cell A1 is

Range(“A1”).Offset(RowOffset:=4, ColumnOffset:=5)

Or, shorter yet, write this:

Range(“A1”).Offset(4,5)

The count of the rows and columns starts at A1 but does not include A1.

But what if you need to go over only a row or a column, but not both? You don’t have to

enter both the row and column parameter. If you need to refer to a cell one column over,

use one of these lines:

Range(“A1”).Offset(ColumnOffset:=1)
Range(“A1”).Offset(,1)

Both lines mean the same, so the choice is yours. Referring to a cell one row up is similar:

Range(“B2”).Offset(RowOffset:=-1)
Range(“B2”).Offset(-1)

Once again, you can choose which one to use. It is a matter of readability of the code.

Suppose you have a list of produce with totals next to them. If you want to find any total

equal to zero and place LOW in the cell next to it, do this:

Set Rng = Range(“B1:B16”).Find(What:=”0”, LookAt:=xlWhole, LookIn:=xlValues)
Rng.Offset(, 1).Value = “LOW”
Sub MyOffset()
With Range(“B1:B16”)
 Set Rng = .Find(What:=”0”, LookAt:=xlWhole, LookIn:=xlValues)
 If Not Rng Is Nothing Then
 firstAddress = Rng.Address
 Do
 Rng.Offset(, 1).Value = “LOW”
 Set Rng = .FindNext(Rng)
 Loop While Not Rng Is Nothing And Rng.Address <> firstAddress
 End If
End With
End Sub

The LOW totals are noted by the program, as shown in Figure 3.1.

Refer to the section “Object Variables” in Chapter 5 for more information on the Set statement.

N
O

T
E

Offsetting isn’t only for single cells—it can be used with ranges. You can shift the focus of a

range over in the same way you can shift the active cell. The following line refers to B2:D4

(see Figure 3.2):

Range(“A1:C3”).Offset(1,1)

71Use the Resize Property to Change the Size of a Range

Use the Resize Property to Change the Size of a Range
The Resize property enables you to change the size of a range based on the location of the

active cell. You can create a new range as needed. The syntax for the Resize property is

Range.Resize(RowSize, ColumnSize)

To create a range B3:D13, use the following:

Range(“B3”).Resize(RowSize:=11, ColumnSize:=3)

Or a simpler way to create this range:

Range(“B3”).Resize(11, 3)

But what if you need to resize by only a row or a column, not both? You do not have to

enter both the row and column parameters.

If you need to expand by two columns, use one of the following:

Range(“B3”).Resize(ColumnSize:=2)

or

Range(“B3”).Resize(,2)

Both lines mean the same. The choice is yours. Resizing just the rows is similar. You can

use either of the following:

Range(“B3”).Resize(RowSize:=2)

or

Range(“B3”).Resize(2)

Once again, the choice is yours. It is a matter of readability of the code.

From the list of produce, find the zero totals and color the cells of the total and corre-

sponding produce (see Figure 3.3):

Set Rng = Range(“B1:B16”).Find(What:=”0”, LookAt:=xlWhole, LookIn:=xlValues)
Rng.Offset(, -1).Resize(, 2).Interior.ColorIndex = 15

Notice that the Offset property was used first to move the active cell over. When you are

resizing, the upper-left corner cell must remain the same.

Figure 3.1
Find the produce with
zero totals.

Figure 3.2
Offsetting a range:
Range(“A1:C3”).
Offset(1,1).
Select.

Chapter 3 Referring to Ranges72

Resizing isn’t only for single cells—it can be used to resize an existing range. For example,

if you have a named range but need it and the column next to it, use this:

Range(“Produce”).Resize(,2)

Remember, the number you resize by is the total number of rows/columns you want to

include.

Figure 3.3
Resizing a range to
extend the selection.

Use the Columns and Rows Properties to Specify a Range
Columns and Rows refer to the columns and rows of a specified Range object, which can be

a worksheet or a range of cells. They return a Range object referencing the rows or columns

of the specified object.

You have seen the following line used, but what is it doing?

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

This line of code finds the last row in a sheet in which Column A has a value and places

the row number of that Range object into FinalRow. This can be useful when you need to

loop through a sheet row by row—you will know exactly how many rows you need to go

through.

Some properties of columns and rows require contiguous rows and columns to work properly. For

example, if you were to use the following line of code, 9 would be the answer because only the first

range would be evaluated:

Range(“A1:B9, C10:D19”).Rows.Count

However, if the ranges are grouped separately the answer would be 19.

Range(“A1:B9”, “C10:D19”).Rows.Count

C A U T I O N

Use the Union Method to Join Multiple Ranges
The Union method enables you to join two or more noncontiguous ranges. It creates a tem-

porary object of the multiple ranges, which allows you to affect them together:

Application.Union(argument1, argument2, etc.)

The following code joins two named ranges on the sheet, inserts the =RAND() formula, and

bolds them:

Set UnionRange = Union(Range(“Range1”), Range(“Range2”))

73Use the ISEMPTY Function to Check Whether a Cell Is Empty

With UnionRange
 .Formula = “=RAND()”
 .Font.Bold = True
End With

Use the Intersect Method to Create a New Range from
Overlapping Ranges

The Intersect method returns the cells that overlap between two or more ranges:

Application.Intersect(argument1, argument2, etc.)

The following code colors the overlapping cells of the two ranges.

Set IntersectRange = Intersect(Range(“Range1”), Range(“Range2”))
IntersectRange.Interior.ColorIndex = 6

Use the ISEMPTY Function to Check Whether a Cell Is Empty
The ISEMPTY function returns a Boolean value of whether a single cell is empty; True if

empty, False if not. The cell must truly be empty. Even if it has a space that you cannot see,

Excel does not consider the cell to be empty:

IsEmpty(Cell)

Figure 3.4 has several groups of data separated by a blank row. You want to make the sepa-

rations a little more obvious.

Figure 3.4
Blank empty rows sepa-
rating data.

Chapter 3 Referring to Ranges74

The following code goes down the data in Column A. When it finds an empty cell, it colors

in the first four cells for that row (see Figure 3.5):

LastRow = Cells(Rows.Count, 1).End(xlUp).Row
For i = 1 To LastRow
 If IsEmpty(Cells(i, 1)) Then
 Cells(i, 1).Resize(1, 4).Interior.ColorIndex = 1
 End If
Next i

Figure 3.5
Colored rows separating
data.

Use the CurrentRegion Property to Select a Data Range
CurrentRegion returns a Range object representing a set of contiguous data. As long as the

data is surrounded by one empty row and one empty column, you can select the table with

CurrentRegion:

RangeObject.CurrentRegion

The following line selects A1:D3 because this is the contiguous range of cells around cell

A1 (see Figure 3.6):

Range(“A1”).CurrentRegion.Select

This is useful if you have a table whose size is in constant flux.

Figure 3.6
Use CurrentRegion
to select a range of con-
tiguous data around the
active cell.

75Use the CurrentRegion Property to Select a Data Range

Even Excel power users may not have encountered the Go To Special dialog box. If you press the F5 key in an Excel work-

sheet, you get the normal Go To dialog box (see Figure 3.7). In the lower-left corner of this dialog is a button labeled

Special. Click that button to get to the super-powerful Go To Special dialog (see Figure 3.8).

In the Excel interface, the Go To Special dialog enables you to select only cells with formulas, only blank cells, or only the

visible cells. Selecting only visible cells is excellent for grabbing the visible results of AutoFiltered data.

To simulate the Go To Special dialog in VBA, use the SpecialCells method. This enables you to act on cells that meet a

certain criteria:

RangeObject.SpecialCells(Type, Value)

This method has two parameters: Type and Value. Type is one of the xlCellType constants:

xlCellTypeAllFormatConditions
xlCellTypeAllValidation
xlCellTypeBlanks
xlCellTypeComments
xlCellTypeConstants
xlCellTypeFormulas
xlCellTypeLastCell

C A S E S T U D Y : U S I N G T H E SpecialCells M E T H O D T O S E L E C T S P E C I F I C
C E L L S

Figure 3.7
Although the Go To dialog
doesn’t seem useful, click
the Special button in the
lower-left corner.

Figure 3.8
The Go To Special dialog
has many incredibly use-
ful selection tools.

Chapter 3 Referring to Ranges76

xlCellTypeSameFormatConditions
xlCellTypeSameValidation
xlCellTypeVisible

Value is optional and can be one of the following:

xlErrors
xlLogical
xlNumbers
xlTextValues

The following code returns all the ranges that have conditional formatting set up. It produces an error if there are no con-

ditional formats and adds a border around each contiguous section it finds:

Set rngCond = ActiveSheet.Cells.SpecialCells(xlCellTypeAllFormatConditions)
If Not rngCond Is Nothing Then
 rngCond.BorderAround xlContinuous
End If

Have you ever had someone send you a worksheet without all the labels filled in? Some people consider that the data

shown in Figure 3.9 looks neat. They enter the Region field only once for each region. This might look aesthetically pleas-

ing, but it is impossible to sort. Even Excel’s pivot table routinely returns data in this annoying format.

Using the SpecialCells method to select all the blanks in this range is one way to fill in all the blank region cells

quickly with the region found above them:

Sub FillIn()
 On Error Resume Next ‘Need this because if there aren’t any blank cells,
 ‘the code will error
 Range(“A1”).CurrentRegion.SpecialCells(xlCellTypeBlanks).FormulaR1C1 _
 = “=R[-1]C”
 Range(“A1”).CurrentRegion.Value = Range(“A1”).CurrentRegion.Value
End Sub

In this code, Range(“A1”).CurrentRegion refers to the contiguous range of data in the report. The

SpecialCells method returns just the blank cells in that range. Although you can read more about R1C1 style for-

mulas in Chapter 6, “R1C1-Style Formulas,” this particular formula fills in all the blank cells with a formula that points to

the cell above the blank cell. The second line of code is a fast way to simulate doing a Copy and then Paste Special Values.

Figure 3.10 shows the results.

Figure 3.9
The blank cells in the
region column make
it difficult to sort data
tables such as this.

77Referencing Tables

Use the Areas Collection to Return a Noncontiguous Range
The Areas collection is a collection of noncontiguous ranges within a selection. It consists

of individual Range objects representing contiguous ranges of cells within the selection. If

the selection contains only one area, the Areas collection contains a single Range object cor-

responding to that selection.

You might be tempted to loop through the sheet, copy a row, and paste it to another sec-

tion. However, there is an easier way (see Figure 3.11):

Range(“A:D”).SpecialCells(xlCellTypeConstants, 1).Copy Range(“I1”)

Figure 3.10
After the macro runs, the
blank cells in the Region
column have been filled
in with data.

Figure 3.11
The Areas collec-
tion makes it easier to
manipulate noncontigu-
ous ranges.

Referencing Tables
With Excel 2007, you were introduced to a new way of interacting with ranges of data:

tables. These special ranges offer the convenience of referencing named ranges, but they

are not created in the same manner. For more information on how to create a named table,

see Chapter 8, “Create and Manipulate Names in VBA.”

The table itself is referenced using the standard method of referring to a ranged name. To

refer to the data in Table1 in Sheet1, do this:

Worksheets(1).Range(“Table1”)

Chapter 3 Referring to Ranges78

This references the data part of the table but does not include the header or total row. To

include the header and total row, do this:

Worksheets(1).Range(“Table1[#All]”)

What I really like about this feature is the ease of referencing specific columns of a table.

You don’t have to know how many columns in from a starting position or the letter/number

of the column, and you don’t have to use a FIND function. Instead, you can use the header

name of the column. For example, do this to reference the Qty column of the table:

Worksheets(1).Range(“Table1[Qty]”)

Creating User-Defined Functions
Excel provides many built-in formulas. However,

sometimes you need a complex custom formula not

offered, such as a formula that sums a range of cells

based on their interior color.

So, what do you do? You could go down your list

and copy the colored cells to another section. Or

perhaps you have a calculator next to you as you

work your way down your list—beware you don’t

enter the same number twice! Both methods are

time-consuming and prone to accidents. What to

do?

You could write a procedure to solve this prob-

lem—after all, that’s what this book is about.

However, you have another option: user-defined
functions (UDFs).

Functions can be created in VBA that can be used

just like Excel’s built-in functions, such as SUM. After

the custom function is created, a user needs to

know only the function name and its arguments.

User-Defined Functions

4

Chapter 4 User-Defined Functions80

Let’s build a custom function used to add two values. After you have created it, you will use it on a worksheet.

Insert a new module in the VB Editor. Type the following function into the module. It is a function called ADD that will

total two numbers in different cells. The function has two arguments:

Add(Number1,Number2)

Number1 is the first number to add; Number2 is the second number to add:

Function Add(Number1 As Integer, Number2 As Integer) As Integer
Add = Number1 + Number2
End Function

Let’s break this down:

 ■ Function name: ADD.

 ■ Arguments are placed in parentheses after the name of the function. This example has two arguments: Number1

and Number2.

 ■ As Integer defines the variable type of the result as a whole number.

 ■ ADD =Number1 + Number2: The result of the function is returned.

Here is how to use the function on a worksheet:

 1. Type numbers into cells A1 and A2.

 2. Select cell A3.

 3. Press Shift+F3 to open the Insert Function dialog box, or from the Formulas tab, choose Insert Function.

 4. Select the User Defined category (see Figure 4.1).

 5. Select the Add function.

 6. In the first argument box, select cell A1 (see Figure 4.2).

 7. In the second argument box, select cell A2.

 8. Click OK.

Congratulations! You have created your first custom function.

C A S E S T U D Y : C U S T O M F U N C T I O N S : E X A M P L E A N D E X P L A N A T I O N

You can easily share custom functions because the users are not required to know how the function

works. See the section “Sharing UDFs” in this chapter for more information.

N
O

T
E

UDFs can be entered only into standard modules. Sheet and ThisWorkbook modules are a special type

of module. If you enter the function there, Excel will not recognize that you are creating a UDF.

N
O

T
E

81Sharing UDFs

Most of the functions used on sheets can also be used in VBA and vice versa. However, in

VBA you call the UDF (ADD) from a procedure (Addition):

Sub Addition ()
Dim Total as Integer
Total = Add (1,10) ‘we use a user-defined function Add
MsgBox “The answer is: “ & Total
End Sub

Sharing UDFs
Where you store a UDF affects how you can share it:

 ■ Personal.xlsb—Store the UDF in Personal.xlsb if it is just for your use and won’t be

used in a workbook opened on another computer.

 ■ Workbook—Store the UDF in the workbook in which it is being used if it needs to be

distributed to many people.

Figure 4.1
You can find the UDFs
under the User Defined
category of the Insert
Function dialog box.

Figure 4.2
Use the Function
Arguments dialog to
enter your arguments.

Chapter 4 User-Defined Functions82

 ■ Add-in—Distribute the UDF via an add-in if the workbook is to be shared among a

select group of people. See Chapter 27, “Creating Add-Ins,” for information on how to

create an add-in.

 ■ Template—Store the UDF in a template if it needs to be used to create several work-

books and the workbooks are distributed to many people.

Useful Custom Excel Functions
The sections that follow include a sampling of functions that can prove useful in the every-

day Excel world.

This chapter contains functions donated by several Excel programmers. These are functions they have

found useful and that they hope will also be of help to you.

Different programmers have different programming styles. We did not rewrite the submissions. As you

review the lines of code, you might notice different ways of doing the same task such as referring to

ranges.

N
O

T
E

Set the Current Workbook’s Name in a Cell
The following function sets the name of the active workbook in a cell, as shown in Figure

4.3:

MyName()

Figure 4.3
Use a UDF to show the
filename or the filename
with directory path.

No arguments are used with this function:

Function MyName() As String
 MyName = ThisWorkbook.Name
End Function

Set the Current Workbook’s Name and File Path in a Cell
A variation of the previous function, the following function sets the file path and name of

the active workbook in a cell, as shown previously in Figure 4.3:

MyFullName()

83Useful Custom Excel Functions

No arguments are used with this function:

Function MyFullName() As String
 MyFullName = ThisWorkbook.FullName
End Function

Check Whether a Workbook Is Open
There might be times when you need to check whether a workbook is open. The following

function returns True if the workbook is open and False if it is not:

BookOpen(Bk)

The argument is Bk, which is the name of the workbook being checked:

Function BookOpen(Bk As String) As Boolean
Dim T As Excel.Workbook
Err.Clear ‘clears any errors
On Error Resume Next ‘if the code runs into an error, it skips it and
‘continues
Set T = Application.Workbooks(Bk)
BookOpen = Not T Is Nothing
‘If the workbook is open, then T will hold the workbook object and therefore
‘will NOT be Nothing
Err.Clear
On Error GoTo 0
End Function

Here is an example of using the function:

Sub OpenAWorkbook()
Dim IsOpen As Boolean
Dim BookName As String
BookName = “ProjectFilesChapter04.xlsm”
IsOpen = BookOpen(BookName) ‘calling our function – don’t forget the parameter
If IsOpen Then
 MsgBox BookName & “ is already open!”
Else
 Workbooks.Open (BookName)
End If
End Sub

Check Whether a Sheet in an Open Workbook Exists
This function requires that the workbook(s) it checks be open. It returns True if the sheet is

found and False if it is not:

SheetExists(SName, WBName)

The arguments are as follows:

 ■ SName—The name of the sheet being searched

 ■ WBName—(Optional) The name of the workbook containing the sheet

Function SheetExists(SName As String, Optional WB As Workbook) As Boolean
 Dim WS As Worksheet
 ‘ Use active workbook by default
 If WB Is Nothing Then

Chapter 4 User-Defined Functions84

 Set WB = ActiveWorkbook
 End If

 On Error Resume Next
 SheetExists = CBool(Not WB.Sheets(SName) Is Nothing)
 On Error GoTo 0

End Function

Here is an example of using this function:

Sub CheckForSheet()
Dim ShtExists As Boolean
ShtExists = SheetExists(“Sheet9”)
‘notice that only one parameter was passed; the workbook name is optional
If ShtExists Then
 MsgBox “The worksheet exists!”
Else
 MsgBox “The worksheet does NOT exist!”
End If
End Sub

Count the Number of Workbooks in a Directory
This function searches the current directory, and its subfolders if you want, counting all

Excel macro workbook files (XLSM) or just the ones starting with a string of letters:

NumFilesInCurDir (LikeText, Subfolders)

The arguments are as follows:

 ■ LikeText—(Optional) A string value to search for must include an asterisk (*) such

as Mr*

 ■ Subfolders—(Optional) True to search subfolders, False (default) not to

Cbool is a function that converts the expression between the parentheses to a boolean value.

N
O

T
E

FileSystemObject requires the Microsoft Scripting Runtime reference library. To enable this set-

ting, go to Tools, References and check Microsoft Scripting Runtime.

N
O

T
E

85Useful Custom Excel Functions

This function is a recursive function—it calls itself until a specific condition is met; in this

case until all subfolders are processed.

Function NumFilesInCurDir(Optional strInclude As String = “”, _
Optional blnSubDirs As Boolean = False)
Dim fso As FileSystemObject
Dim fld As Folder
Dim fil As File
Dim subfld As Folder
Dim intFileCount As Integer
Dim strExtension As String
 strExtension = “XLSM”
 Set fso = New FileSystemObject
 Set fld = fso.GetFolder(ThisWorkbook.Path)
 For Each fil In fld.Files
 If UCase(fil.Name) Like “*” & UCase(strInclude) & “*.” & _
 UCase(strExtension) Then
 intFileCount = intFileCount + 1
 End If
 Next fil
 If blnSubDirs Then
 For Each subfld In fld.Subfolders
 intFileCount = intFileCount + NumFilesInCurDir(strInclude, True)
 Next subfld
 End If
 NumFilesInCurDir = intFileCount
 Set fso = Nothing
End Function

Here is an example of using this function:

Sub CountMyWkbks()
Dim MyFiles As Integer
MyFiles = NumFilesInCurDir(“MrE*”, True)
MsgBox MyFiles & “ file(s) found”
End Sub

Retrieve USERID
Ever need to keep a record of who saves changes to a workbook? With the USERID function,

you can retrieve the name of the user logged in to a computer. Combine it with the func-

tion discussed in the “Retrieve Permanent Date and Time” section and you have a nice log

file. You can also use the USERID function to set up user rights to a workbook:

WinUserName ()

No arguments are used with this function.

The USERID function is an advanced function that uses the application programming interface (API),

which is reviewed in Chapter 24, “Windows Application Programming Interface.”

N
O

T
E

Chapter 4 User-Defined Functions86

This first section (Private declarations) must be at the top of the module:

Private Declare Function WNetGetUser Lib “mpr.dll” Alias “WNetGetUserA” _
 (ByVal lpName As String, ByVal lpUserName As String, _
lpnLength As Long) As Long
Private Const NO_ERROR = 0
Private Const ERROR_NOT_CONNECTED = 2250&
Private Const ERROR_MORE_DATA = 234
Private Const ERROR_NO_NETWORK = 1222&
Private Const ERROR_EXTENDED_ERROR = 1208&
Private Const ERROR_NO_NET_OR_BAD_PATH = 1203&

You can place the following section of code anywhere in the module as long as it is below

the previous section:

Function WinUsername() As String
 ‘variables
 Dim strBuf As String, lngUser As Long, strUn As String
 ‘clear buffer for user name from api func
 strBuf = Space$(255)
 ‘use api func WNetGetUser to assign user value to lngUser
 ‘will have lots of blank space
 lngUser = WNetGetUser(“”, strBuf, 255)
 ‘if no error from function call
 If lngUser = NO_ERROR Then
 ‘clear out blank space in strBuf and assign val to function
 strUn = Left(strBuf, InStr(strBuf, vbNullChar) - 1)
 WinUsername = strUn
 Else
 ‘error, give up
 WinUsername = “Error :” & lngUser
 End If
End Function

Function example:

Sub CheckUserRights()
Dim UserName As String
UserName = WinUsername
Select Case UserName
 Case “Administrator”
 MsgBox “Full Rights”
 Case “Guest”
 MsgBox “You cannot make changes”
 Case Else
 MsgBox “Limited Rights”
End Select
End Sub

Retrieve Date and Time of Last Save
This function retrieves the saved date and time of any workbook, including the current one

(see Figure 4.4).

LastSaved(FullPath)

87Useful Custom Excel Functions

The argument is FullPath, a string showing the full path and filename of the file in ques-

tion:

Function LastSaved(FullPath As String) As Date
LastSaved = FileDateTime(FullPath)
End Function

Retrieve Permanent Date and Time
Because of the volatility of the NOW function, it isn’t very useful for stamping a worksheet

with the creation or editing date. Every time the workbook is opened or recalculated,

the result of the NOW function is updated. The following function uses the NOW function.

However, because you need to reenter the cell to update the function, it is much less vola-

tile (see Figure 4.5):

DateTime()

Figure 4.4
Retrieve date and time of
last save.

The cell must be formatted properly to display the date/time.

N
O

T
E

Figure 4.5
Retrieve permanent date
and time.

No arguments are used with this function:

DateTime()

The cell must be formatted properly to display the date/time.

N
O

T
E

Function example:

Function DateTime()
 DateTime = Now
End Function

Chapter 4 User-Defined Functions88

Validate an E-mail Address
If you manage an e-mail subscription list, you might receive invalid e-mail addresses, such

as addresses with a space before the “at” symbol (@). The ISEMAILVALID function can check

addresses and confirm that they are proper e-mail addresses (see Figure 4.6).

Figure 4.6
Validating e-mail
addresses.

The argument is strEmail, an e-mail address:

Function IsEmailValid(strEmail As String) As Boolean
Dim strArray As Variant
Dim strItem As Variant
Dim i As Long
Dim c As String
Dim blnIsItValid As Boolean
blnIsItValid = True
‘count the @ in the string
i = Len(strEmail) - Len(Application.Substitute(strEmail, “@”, “”))
‘if there is more than one @, invalid email
If i <> 1 Then IsEmailValid = False: Exit Function
ReDim strArray(1 To 2)
‘the following two lines place the text to the left and right
‘of the @ in their own variables
strArray(1) = Left(strEmail, InStr(1, strEmail, “@”, 1) - 1)
strArray(2) = Application.Substitute(Right(strEmail, Len(strEmail) - _
 Len(strArray(1))), “@”, “”)

For Each strItem In strArray
 ‘verify there is something in the variable.
‘If there isn’t, then part of the email is missing
 If Len(strItem) <= 0 Then
 blnIsItValid = False
 IsEmailValid = blnIsItValid
 Exit Function
 End If
 ‘verify only valid characters in the email
 For i = 1 To Len(strItem)
‘lowercases all letters for easier checking
 c = LCase(Mid(strItem, i, 1))
 If InStr(“abcdefghijklmnopqrstuvwxyz_-.”, c) <= 0 _
 And Not IsNumeric Then

This function cannot verify that an e-mail address is an existing one. It only checks the syntax to verify

that the address may be legitimate.

IsEmailValid (StrEmail)

C A U T I O N

89Useful Custom Excel Functions

 blnIsItValid = False
 IsEmailValid = blnIsItValid
 Exit Function
 End If
 Next i
‘verify that the first character of the left and right aren’t periods
 If Left(strItem, 1) = “.” Or Right(strItem, 1) = “.” Then
 blnIsItValid = False
 IsEmailValid = blnIsItValid
 Exit Function
 End If
Next strItem
‘verify there is a period in the right half of the address
If InStr(strArray(2), “.”) <= 0 Then
 blnIsItValid = False
 IsEmailValid = blnIsItValid
 Exit Function
End If
i = Len(strArray(2)) - InStrRev(strArray(2), “.”) ‘locate the period
‘verify that the number of letters corresponds to a valid domain extension
If i <> 2 And i <> 3 And i <> 4 Then
 blnIsItValid = False
 IsEmailValid = blnIsItValid
 Exit Function
End If
‘verify that there aren’t two periods together in the email
If InStr(strEmail, “..”) > 0 Then
 blnIsItValid = False
 IsEmailValid = blnIsItValid
 Exit Function
End If
IsEmailValid = blnIsItValid
End Function

Sum Cells Based on Interior Color
Let’s say you have created a list of how much each of your clients owes. From this list, you

want to sum just those cells you have colored to indicate clients who are 30 days past due.

Cells colored by conditional formatting will not work; the cells must have an interior color.

SumColor(CellColor, SumRange)N
O

T
E

The arguments are as follows:

 ■ CellColor—The address of a cell with the target color

 ■ SumRange—The range of cells to be searched

Function SumByColor(CellColor As Range, SumRange As Range)
Dim myCell As Range
Dim iCol As Integer

Chapter 4 User-Defined Functions90

Dim myTotal
iCol = CellColor.Interior.ColorIndex ‘get the target color
For Each myCell In SumRange ‘look at each cell in the designated range
‘if the cell color matches the target color
If myCell.Interior.ColorIndex = iCol Then
‘add the value in the cell to the total
myTotal = WorksheetFunction.Sum(myCell) + myTotal
 End If
Next myCell
SumByColor = myTotal
End Function

Figure 4.7 shows a sample worksheet using this function.

Figure 4.7
Sum cells based on inte-
rior color.

Count Unique Values
How many times have you had a long list of values and needed to know how many were

unique values? This function goes through a range and provides that information, as shown

in Figure 4.8:

NumUniqueValues(Rng)

Figure 4.8
Count the number of
unique values in a range.

91Useful Custom Excel Functions

The argument is Rng, the range to search unique values.

Function example:

Function NumUniqueValues(Rng As Range) As Long
Dim myCell As Range
Dim UniqueVals As New Collection
Application.Volatile ‘forces the function to recalculate when the range
changes
On Error Resume Next
‘the following places each value from the range into a collection
‘because a collection, with a key parameter, can contain only unique values,
‘there will be no duplicates the error statements force the program to
‘continue when the error messages appear for duplicate items in the collection
For Each myCell In Rng
 UniqueVals.Add myCell.Value, CStr(myCell.Value)
Next myCell
On Error GoTo 0
‘returns the number of items in the collection
NumUniqueValues = UniqueVals.Count
End Function

Remove Duplicates from a Range
No doubt, you have also had a list of items and needed to list only the unique values. The

following function goes through a range and stores only the unique values:

UniqueValues (OrigArray)

The argument is OrigArray, an array from which the duplicates will be removed.

This first section (Const declarations) must be at the top of the module:

Const ERR_BAD_PARAMETER = “Array parameter required”
Const ERR_BAD_TYPE = “Invalid Type”
Const ERR_BP_NUMBER = 20000
Const ERR_BT_NUMBER = 20001

You can place the following section of code anywhere in the module as long as it is below

the previous section:

Public Function UniqueValues(ByVal OrigArray As Variant) As Variant
 Dim vAns() As Variant
 Dim lStartPoint As Long
 Dim lEndPoint As Long
 Dim lCtr As Long, lCount As Long
 Dim iCtr As Integer
 Dim col As New Collection
 Dim sIndex As String
 Dim vTest As Variant, vItem As Variant
 Dim iBadVarTypes(4) As Integer
 ‘Function does not work if array element is one of the
 ‘following types
 iBadVarTypes(0) = vbObject
 iBadVarTypes(1) = vbError
 iBadVarTypes(2) = vbDataObject
 iBadVarTypes(3) = vbUserDefinedType
 iBadVarTypes(4) = vbArray

Chapter 4 User-Defined Functions92

 ‘Check to see whether the parameter is an array
 If Not IsArray(OrigArray) Then
 Err.Raise ERR_BP_NUMBER, , ERR_BAD_PARAMETER
 Exit Function
 End If
 lStartPoint = LBound(OrigArray)
 lEndPoint = UBound(OrigArray)
 For lCtr = lStartPoint To lEndPoint
 vItem = OrigArray(lCtr)
 ‘First check to see whether variable type is acceptable
 For iCtr = 0 To UBound(iBadVarTypes)
 If VarType(vItem) = iBadVarTypes(iCtr) Or _
 VarType(vItem) = iBadVarTypes(iCtr) + vbVariant Then
 Err.Raise ERR_BT_NUMBER, , ERR_BAD_TYPE
 Exit Function
 End If
 Next iCtr
 ‘Add element to a collection, using it as the index
 ‘if an error occurs, the element already exists
 sIndex = CStr(vItem)
 ‘first element, add automatically
 If lCtr = lStartPoint Then
 col.Add vItem, sIndex
 ReDim vAns(lStartPoint To lStartPoint) As Variant
 vAns(lStartPoint) = vItem
 Else
 On Error Resume Next
 col.Add vItem, sIndex
 If Err.Number = 0 Then
 lCount = UBound(vAns) + 1
 ReDim Preserve vAns(lStartPoint To lCount)
 vAns(lCount) = vItem
 End If
 End If
 Err.Clear
 Next lCtr
 UniqueValues = vAns
End Function

Here is an example of using this function. See Figure 4.9 for the result on a worksheet:

Function nodupsArray(rng As Range) As Variant
 Dim arr1() As Variant
 If rng.Columns.Count > 1 Then Exit Function
 arr1 = Application.Transpose(rng)
 arr1 = UniqueValues(arr1)
 nodupsArray = Application.Transpose(arr1)
End Function

93Useful Custom Excel Functions

Find the First Nonzero-Length Cell in a Range
Suppose you imported a large list of data with many empty cells. Here is a function that

evaluates a range of cells and returns the value of the first nonzero-length cell:

FirstNonZeroLength(Rng)

The argument is Rng, the range to search.

Function example:

Function FirstNonZeroLength(Rng As Range)
Dim myCell As Range
FirstNonZeroLength = 0#
For Each myCell In Rng
 If Not IsNull(myCell) And myCell <> “” Then
 FirstNonZeroLength = myCell.Value
 Exit Function
 End If
Next myCell
FirstNonZeroLength = myCell.Value
End Function

Figure 4.10 shows the function on a sample worksheet.

Figure 4.9
List unique values from
a range.

Figure 4.10
Find the value of the first
nonzero-length cell in
a range.

Chapter 4 User-Defined Functions94

Substitute Multiple Characters
Excel has a substitute function, but it is a value-for-value substitution. What if you have

several characters you need to substitute? Figure 4.11 shows several examples of how this

function works:

MSubstitute(trStr, frStr, toStr)

Figure 4.11
Substitute multiple char-
acters in a cell.

The arguments are as follows:

■ trStr—The string to be searched

■ frStr—The text being searched for

■ toStr—The replacement text

The toStr argument is assumed to be the same length as frStr. If not, the remaining characters

are considered null (“”). The function is case sensitive. To replace all instances of a, use a and A. You

cannot replace one character with two characters.

=MSUBSTITUTE(“This is a test”,”i”,”$@”)

This results in this:

“Th$s $s a test”

C A U T I O N

Function example:

Function MSUBSTITUTE(ByVal trStr As Variant, frStr As String, _
 toStr As String) As Variant
Dim iCol As Integer
Dim j As Integer
Dim Ar As Variant
Dim vfr() As String
Dim vto() As String
ReDim vfr(1 To Len(frStr))
ReDim vto(1 To Len(frStr))
‘place the strings into an array
For j = 1 To Len(frStr)
 vfr(j) = Mid(frStr, j, 1)
 If Mid(toStr, j, 1) <> “” Then
 vto(j) = Mid(toStr, j, 1)
 Else
 vto(j) = “”
 End If
Next j
‘compare each character and substitute if needed

95Useful Custom Excel Functions

If IsArray(trStr) Then
 Ar = trStr
 For iRow = LBound(Ar, 1) To UBound(Ar, 1)
 For iCol = LBound(Ar, 2) To UBound(Ar, 2)
 For j = 1 To Len(frStr)
 Ar(iRow, iCol) = Application.Substitute(Ar(iRow, iCol), _
 vfr(j), vto(j))
 Next j
 Next iCol
 Next iRow
Else
 Ar = trStr
 For j = 1 To Len(frStr)
 Ar = Application.Substitute(Ar, vfr(j), vto(j))
 Next j
End If
MSUBSTITUTE = Ar
End Function

Retrieve Numbers from Mixed Text
This function extracts and returns numbers from text that is a mix of numbers and letters,

as shown in Figure 4.12:

RetrieveNumbers (myString)

Figure 4.12
Extract numbers from
mixed text.

The argument is myString, the text containing the numbers to be extracted.

Function example:

Function RetrieveNumbers(myString As String)
Dim i As Integer, j As Integer
Dim OnlyNums As String
‘starting at the END of the string and moving backwards (Step -1)
For i = Len(myString) To 1 Step -1
‘IsNumeric is a VBA function that returns True if a variable is a number
‘When a number is found, it is added to the OnlyNums string
 If IsNumeric(Mid(myString, i, 1)) Then
 j = j + 1
 OnlyNums = Mid(myString, i, 1) & OnlyNums
 End If
 If j = 1 Then OnlyNums = CInt(Mid(OnlyNums, 1, 1))
Next i
RetrieveNumbers = CLng(OnlyNums)
End Function

Chapter 4 User-Defined Functions96

Convert Week Number into Date
Have you ever received a spreadsheet report in which all the headers showed the week

number? This can be confusing because you probably don’t know what Week 15 actually is.

You would have to get out your calendar and count the weeks. This problem is exacerbated

if you need to count weeks in a previous year. What you need is a nice little function that

converts Week ## Year into the date of a particular day in a given week, as shown in Figure

4.13:

Weekday(Str)

Figure 4.13
Convert a week number
into a date more easily
referenced.

The argument is Str, the week to be converted in “Week ##, YYYY” format.

The result must be formatted as a date.

N
O

T
E

Function example:

Function ConvertWeekDay(Str As String) As Date
Dim Week As Long
Dim FirstMon As Date
Dim TStr As String
FirstMon = DateSerial(Right(Str, 4), 1, 1)
FirstMon = FirstMon - FirstMon Mod 7 + 2
TStr = Right(Str, Len(Str) - 5)
Week = Left(TStr, InStr(1, TStr, “ “, 1)) + 0
ConvertWeekDay = FirstMon + (Week - 1) * 7
End Function

Separate Delimited String
In this example, you need to paste a column of delimited data. You could use Excel’s Text to

Columns, but you need only an element or two from each cell. Text to Columns parses the

entire thing. What you need is a function that lets you specify the number of the element in

a string that you need, as shown in Figure 4.14:

StringElement(str,chr,ind)

97Useful Custom Excel Functions

The arguments are as follows:

■ str—The string to be parsed

■ chr—The delimiter

■ ind—The position of the element to be returned

Function example:

Function StringElement(str As String, chr As String, ind As Integer)
Dim arr_str As Variant
arr_str = Split(str, chr) ‘Not compatible with XL97
StringElement = arr_str(ind - 1)
End Function

Sort and Concatenate
The following function enables you to take a column of data, sort it, and concatenate it

using a comma (,) as the delimiter (see Figure 4.15):

SortConcat(Rng)

Figure 4.14
Extracting a single ele-
ment from delimited text.

Figure 4.15
Sort and concatenate a
range of variables.

The argument is Rng, the range of data to be sorted and concatenated. SortConcat calls

another procedure, BubbleSort, that must be included.

Function example:

Function SortConcat(Rng As Range) As Variant
Dim MySum As String, arr1() As String
Dim j As Integer, i As Integer
Dim cl As Range
Dim concat As Variant

Chapter 4 User-Defined Functions98

On Error GoTo FuncFail:
‘initialize output
SortConcat = 0#
‘avoid user issues
If Rng.Count = 0 Then Exit Function
‘get range into variant variable holding array
ReDim arr1(1 To Rng.Count)
‘fill array
i = 1
For Each cl In Rng
 arr1(i) = cl.Value
 i = i + 1
Next
‘sort array elements
Call BubbleSort(arr1)
‘create string from array elements
For j = UBound(arr1) To 1 Step -1
 If Not IsEmpty(arr1(j)) Then
 MySum = arr1(j) & “, “ & MySum
 End If
Next j
‘assign value to function
SortConcat = Left(MySum, Len(MySum) - 2)
‘exit point
concat_exit:
Exit Function
‘display error in cell
FuncFail:
SortConcat = Err.Number & “ - “ & Err.Description
Resume concat_exit
End Function

The following function is the ever-popular BubbleSort. Many developers use this program

to do a simple sort of data:

Sub BubbleSort(List() As String)
‘ Sorts the List array in ascending order
Dim First As Integer, Last As Integer
Dim i As Integer, j As Integer
Dim Temp
First = LBound(List)
Last = UBound(List)
For i = First To Last - 1
 For j = i + 1 To Last
 If UCase(List(i)) > UCase(List(j)) Then
 Temp = List(j)
 List(j) = List(i)
 List(i) = Temp
 End If
 Next j
Next i
End Sub

99Useful Custom Excel Functions

Sort Numeric and Alpha Characters
This function takes a mixed range of numeric and alpha characters and sorts them—first

numerically and then alphabetically. The result is placed in an array that can be displayed

on a worksheet by using an array formula, as shown in Figure 4.16:

sorter(Rng)

Figure 4.16
Sort a mixed alphanu-
meric list.

The argument is Rng, the range to be sorted.

Function example:

Function sorter(Rng As Range) As Variant
‘returns an array
Dim arr1() As Variant
If Rng.Columns.Count > 1 Then Exit Function
arr1 = Application.Transpose(Rng)
QuickSort arr1
sorter = Application.Transpose(arr1)
End Function

The function uses the following two procedures to sort the data in the range:

Public Sub QuickSort(ByRef vntArr As Variant,
 Optional ByVal lngLeft As Long = -2, _
 Optional ByVal lngRight As Long = -2)
Dim i, j, lngMid As Long
Dim vntTestVal As Variant
If lngLeft = -2 Then lngLeft = LBound(vntArr)
If lngRight = -2 Then lngRight = UBound(vntArr)
If lngLeft < lngRight Then
 lngMid = (lngLeft + lngRight) \ 2
 vntTestVal = vntArr(lngMid)
 i = lngLeft
 j = lngRight
 Do
 Do While vntArr(i) < vntTestVal
 i = i + 1

Chapter 4 User-Defined Functions100

 Loop
 Do While vntArr(j) > vntTestVal
 j = j - 1
 Loop
 If i <= j Then
 Call SwapElements(vntArr, i, j)
 i = i + 1
 j = j - 1
 End If
 Loop Until i > j
 If j <= lngMid Then
 Call QuickSort(vntArr, lngLeft, j)
 Call QuickSort(vntArr, i, lngRight)
 Else
 Call QuickSort(vntArr, i, lngRight)
 Call QuickSort(vntArr, lngLeft, j)
 End If
End If
End Sub

Private Sub SwapElements(ByRef vntItems As Variant,
 ByVal lngItem1 As Long, _
 ByVal lngItem2 As Long)
Dim vntTemp As Variant
vntTemp = vntItems(lngItem2)
vntItems(lngItem2) = vntItems(lngItem1)
vntItems(lngItem1) = vntTemp
End Sub

Search for a String Within Text
Ever needed to find out which cells contain a specific string of text? This function can

search strings in a range, looking for specified text. It returns a result identifying which cells

contain the text, as shown in Figure 4.17:

ContainsText(Rng,Text)

Figure 4.17
Return a result identify-
ing which cells contain a
specified string.

The arguments are as follows:

 ■ Rng—The range in which to search

 ■ Text—The text for which to search

Function example:

Function ContainsText(Rng As Range, Text As String) As String
Dim T As String
Dim myCell As Range

101Useful Custom Excel Functions

For Each myCell In Rng ‘look in each cell
 If InStr(myCell.Text, Text) > 0 Then ‘look in the string for the text
 If Len(T) = 0 Then ‘if the text is found, add the address to my result
 T = myCell.Address(False, False)
 Else
 T = T & “,” & myCell.Address(False, False)
 End If
 End If
Next myCell
ContainsText = T
End Function

Reverse the Contents of a Cell
This function is mostly fun, but you might find it useful—it reverses the contents of a cell:

ReverseContents(myCell, IsText)

The arguments are as follows:

 ■ myCell—The specified cell

 ■ IsText—(Optional) If the cell value should be treated as text (default) or a number

Function example:

Function ReverseContents(myCell As Range, Optional IsText As Boolean = True)
Dim i As Integer
Dim OrigString As String, NewString As String
OrigString = Trim(myCell) ‘remove leading and trailing spaces
For i = 1 To Len(OrigString)
‘by adding the variable NewString to the character,
‘instead of adding the character to NewStringthe string is reversed
 NewString = Mid(OrigString, i, 1) & NewString
Next i
If IsText = False Then
 ReverseContents = CLng(NewString)
Else
 ReverseContents = NewString
End If
End Function

Multiple Max
MAX finds and returns the maximum value in a range, but it doesn’t tell you whether there is

more than one maximum value. This function returns the addresses of the maximum values

in a range, as shown in Figure 4.18:

ReturnMaxs(Rng)

The argument is Rng, the range to search for the maximum values.

Function example:

Function ReturnMaxs(Rng As Range) As String
Dim Mx As Double
Dim myCell As Range
‘if there is only one cell in the range, then exit

Chapter 4 User-Defined Functions102

If Rng.Count = 1 Then ReturnMaxs = Rng.Address(False, False): Exit Function
Mx = Application.Max(Rng) ‘uses Excel’s Max to find the max in the range
‘Because you now know what the max value is,
‘search the ranging finding matches and return the address
For Each myCell In Rng
 If myCell = Mx Then
 If Len(ReturnMaxs) = 0 Then
 ReturnMaxs = myCell.Address(False, False)
 Else
 ReturnMaxs = ReturnMaxs & “, “ & myCell.Address(False, False)
 End If
 End If
Next myCell
End Function

Return Hyperlink Address
Let’s say that you’ve received a spreadsheet with a list of hyperlinked information. You want

to see the actual links, not the descriptive text. You could just right-click the hyperlink and

select Edit Hyperlink, but you want something more permanent. This function extracts the

hyperlink address, as shown in Figure 4.19:

GetAddress(Hyperlink)

Figure 4.18
Return the addresses of
all maximum values in
a range.

Figure 4.19
Extract the hyperlink
address from behind a
hyperlink.

103Useful Custom Excel Functions

The argument is HyperlinkCell, the hyperlinked cell from which you want the address

extracted.

Function example:

Function GetAddress(HyperlinkCell As Range)
 GetAddress = Replace(HyperlinkCell.Hyperlinks(1).Address, “mailto:”, “”)
End Function

Return the Column Letter of a Cell Address
You can use CELL(“Col”) to return a column number; but what if you need the column let-

ter? This function extracts the column letter from a cell address, as shown in Figure 4.20:

ColName(Rng)

Figure 4.20
Return the column letter
of a cell address.

The argument is Rng, the cell for which you want the column letter.

Function example:

Function ColName(Rng As Range) As String
ColName = Left(Rng.Range(“A1”).Address(True, False), _
 InStr(1, Rng.Range(“A1”).Address(True, False), “$”, 1) - 1)
End Function

Static Random
The function =RAND() can prove very useful for creating random numbers, but it constantly

recalculates. What if you need random numbers but don’t want them to change constantly?

The following function places a random number, but the number changes only if you force

the cell to recalculate, as shown in Figure 4.21:

StaticRAND()

Figure 4.21
Produce random numbers
not quite so volatile.

There are no arguments for this function.

Function example:

Function StaticRAND() As Double
Randomize
STATICRAND = Rnd
End Function

Chapter 4 User-Defined Functions104

Using Select Case on a Worksheet
At some point, you have probably nested an If...Then...Else on a worksheet to return a

value. The Select...Case statement available in VBA makes this a lot easier, but you can’t

use Select...Case statements in a worksheet formula. Instead, you can create a UDF (see

Figure 4.22).

Figure 4.22
Example of using a
Select...Case
structure in a UDF rather
than nested If...
Then statements.

The following function shows how you can use Select statements to produce the results of a

nested If...Then statement:

Function state_period(mth As Integer, yr As Integer)
Select Case mth
 Case 1
 state_period = “July 1, “ & yr - 1 & “ through July 31, “ & yr - 1
 Case 2
 state_period = “August 1, “ & yr - 1 & “ through August 31, “ & yr - 1
 Case 3
 state_period = “September 1, “ & yr - 1 & “ through September 30, “ & yr - 1
 Case 4
 state_period = “October 1, “ & yr - 1 & “ through October 31, “ & yr - 1
 Case 5
 state_period = “November 1, “ & yr - 1 & “ through November 30, “ & yr - 1
 Case 6
 state_period = “December 1, “ & yr - 1 & “ through December 31, “ & yr - 1
 Case 7
 state_period = “January 1, “ & yr & “ through January 31, “ & yr
 Case 8
 state_period = “February 1, “ & yr & “ through February 28, “ & yr
 Case 9
 state_period = “March 1, “ & yr & “ through March 31, “ & yr
 Case 10
 state_period = “April 1, “ & yr & “ through April 30, “ & yr
 Case 11
 state_period = “May 1, “ & yr & “ through May 31, “ & yr
 Case 12
 state_period = “June 1, “ & yr & “ through June 30, “ & yr
 Case 13
 state_period = “Pre-Final”
 Case 14
 state_period = “Closeout”
End Select
End Function

Loops are a fundamental component of any

programming language. If you’ve taken any pro-

gramming classes, even BASIC, you’ve likely

encountered a For...Next loop. Fortunately, VBA

supports all the usual loops, plus a special loop that

is excellent to use with VBA.

This chapter covers the basic loop constructs:

■ For...Next

■ Do...While

■ Do...Until

■ While...Loop

■ Until...Loop

This chapter also discusses the useful loop construct

that is unique to object-oriented languages:

 ■ For Each...Next

For...Next Loops

For and Next are common loop constructs.

Everything between For and Next is run multiple

times. Each time the code runs, a certain counter

variable, specified in the For statement, has a differ-

ent value.

Consider this code:

For I = 1 to 10
 Cells(I, I).Value = I
Next I

As this program starts to run, you need to give the

counter variable a name of I. The first time through

the code, the variable I is set to 1. The first time

that the loop is executed, I is equal to 1, so the cell

in Row 1, Column 1 will be set to 1 (see Figure

5.1).

Looping and Flow Control

5

Chapter 5 Looping and Flow Control108

Let’s take a close look at what happens as VBA gets to the line that says Next I. Before

running this line, the variable I is equal to 1. During the execution of Next I, VBA must

make a decision. VBA adds 1 to the variable I and compares it to the maximum value in the

To clause of the For statement. If it is within the limits specified in the To clause, the loop

is not finished. In this case, the value of I will be incremented to 2. Code execution then

moves back to the first line of code after the For statement. Figure 5.2 shows the state of

the program before running the Next line. Figure 5.3 shows what happens after executing

the Next line.

Figure 5.1
After the first iteration
through the loop, the cell
in Row 1, Column 1 has
the value of 1.

Figure 5.2
Before running the Next
I statement, I is equal
to 1. VBA can safely add
1 to I, and it will be less
than the 10 specified in
the To clause of the For
statement.

Figure 5.3
After running the Next
I statement, I is incre-
mented to 2. Code execu-
tion continues with the
line of code immediately
following the For state-
ment, which writes a 2
to cell B2.

The second time through the loop, the value of I is 2. The cell in Row 2, Column 2 (that

is, cell B2) gets a value of 2.

As the process continues, the Next I statement advances I up to 3, 4, and so on. On the

tenth pass through the loop, the cell in Row 10, Column 10 is assigned a value of 10.

109In This Chapter

It is interesting to watch what happens to the variable I on the last pass through Next I. In

Figure 5.4, you can see that before executing Next I the tenth time, the variable I is equal

to 10.

VBA is now at a decision point. It adds 1 to the variable I. I is now equal to 11, which is

greater than the limit in the For...Next loop. VBA then moves execution to the next line in

the macro after the Next statement (see Figure 5.5). In case you are tempted to use the vari-

able I later in the macro, it is important to realize that it might be incremented beyond the

limit specified in the To clause of the For statement.

Figure 5.4
Before running Next I
for the tenth time, the
variable I is equal to 10.

Figure 5.5
After incrementing I to
11, code execution moves
to the line after the
Next statement.

The common use for such a loop is to walk through all the rows in a dataset and decide to

perform some action based on some criteria. For example, if you want to mark all the rows

with positive service revenue in Column F, you could use this loop:

For I = 2 to 10
 If Cells(I, 6).Value > 0 Then
 Cells(I, 8).Value = “Service Revenue”
 Cells(I, 1).Resize(1, 8).Interior.ColorIndex = 4
 End If
Next i

This loop checks each item of data from Row 2 through Row 10. If there is a positive num-

ber in Column F, Column H of that row will have a new label, and the cells in Columns

A:H of the row will be colored green. After running this macro, the results look like Figure

5.6.

Chapter 5 Looping and Flow Control110

Using Variables in the For Statement
The previous example is not very useful in that it works only when there are exactly 10

rows of data. It is possible to use a variable to specify the upper/lower limit of the For state-

ment. This code sample identifies FinalRow with data and then loops from Row 2 to that

row:

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
For I = 2 to FinalRow
 If Cells(I, 6).Value > 0 Then
 Cells(I, 8).Value = “Service Revenue”
 Cells(I, 1).Resize(1, 8).Interior.ColorIndex = 4
 End If
Next I

Figure 5.6
After the loop completes
all nine iterations, any
rows with positive values
in Column F are colored
green and have the label
“Service Revenue” added
to Column H.

Exercise caution when using variables. What if the imported file today is empty and has only a head-

ing row? In this case, the FinalRow variable is equal to 1. This makes the first statement of the loop

essentially say For I = 2 to 1. Because the start number is higher than the end number, the

loop does not execute at all. The variable I is equal to 2, and code execution jumps to the line after

Next.

C A U T I O N

Variations on the For...Next Loop
In a For...Next loop, it is possible to have the loop variable jump up by something other

than 1. For example, you might use it to apply green-bar formatting to every other row in a

dataset. In this case, you want to have the counter variable I examine every other row in the

dataset. Indicate this by adding the Step clause to the end of the For statement:

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
For i = 2 to FinalRow Step 2
 Cells(i, 1).Resize(1, 8).Interior.ColorIndex = 35
Next i

While running this code, VBA adds a light green shading to Rows 2, 4, 6, and so on (see

Figure 5.7).

111In This Chapter

To see a demo of this macro, search for Excel VBA 5 at YouTube.

The Step clause can be any number. You might want to check every tenth row of a dataset

to extract a random sample. In this case, you would use Step 10:

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
NextRow = FinalRow + 5
Cells(NextRow-1, 1).Value = “Random Sample of Above Data”
For I = 2 to FinalRow Step 10
 Cells(I, 1).Resize(1, 8).Copy Destination:=Cells(NextRow, 1)
 NextRow = NextRow + 1
Next i

Figure 5.7
The Step clause in the
For statement of the
loop causes the action to
occur on every other row.

You can also have a For...Next loop run backward from high to low. This is particularly

useful if you are selectively deleting rows. To do this, reverse the order of the For statement

and have the Step clause specify a negative number:

‘ Delete all rows where column C is the Internal rep – S54
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
For I = FinalRow to 2 Step -1
 If Cells(I, 3).Value = “S54” Then
 Rows(I).Delete
 End If
Next i

There is a faster way to delete the records, which is discussed in Chapter 12, “Deleting Records Using a

Filter.”N
O

T
E

Exiting a Loop Early After a Condition Is Met
Sometimes you don’t need to execute the whole loop. Perhaps you just need to read

through the dataset until you find one record that meets a certain criteria. In this case, you

want to find the first record and then stop the loop. A statement called Exit For does this.

5

Chapter 5 Looping and Flow Control112

The following sample macro looks for a row in the dataset where service revenue in

Column F is positive and product revenue in Column E is 0. If such a row is found, you

might indicate a message that the file needs manual processing today and move the cell

pointer to that row:

‘ Are there any special processing situations in the data?
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
ProblemFound = False
For I = 2 to FinalRow
 If Cells(I, 6).Value > 0 Then
 If cells(I, 5).Value = 0 Then
 Cells(I, 6).Select
 ProblemFound = True
 Exit For
 End If
 End If
Next I
If ProblemFound Then
 MsgBox “There is a problem at row “ & I
 Exit Sub
End If

Nesting One Loop Inside Another Loop
It is okay to run a loop inside another loop. The following code has the first loop run

through all the rows in a recordset, while the second loop runs through all the columns:

‘ Loop through each row and column
‘ Add a checkerboard format
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
FinalCol = Cells(1, Columns.Count).End(xlToLeft).Column
For I = 2 to FinalRow
 ‘ For even numbered rows, start in column 1
 ‘ For odd numbered rows, start in column 2
 If I Mod 2 = 1 Then ‘ Divide I by 2 and keep remainder
 StartCol = 1
 Else
 StartCol = 2
 End If
 For J = StartCol to FinalCol Step 2
 Cells(I, J).Interior.ColorIndex = 35
 Next J
Next I

In this code, the outer loop is using the I counter variable to loop through all the rows in

the dataset. The inner loop is using the J counter variable to loop through all the columns

in that row. Because Figure 5.8 has seven data rows, the code runs through the I loop seven

times. Each time through the I loop, the code runs through the J loop six or seven times.

This means that the line of code that is inside the J loop ends up being executed several

times for each pass through the I loop. Figure 5.8 shows the result.

113Do Loops

Do Loops
There are several variations of the Do loop. The most basic Do loop is useful for doing a

bunch of mundane tasks. For example, suppose someone sends you a list of addresses going

down a column, as shown in Figure 5.9.

Figure 5.8
The result of nesting one
loop inside the other;
VBA can loop through
each row and then each
column.

In this case, you might need to rearrange these addresses into a database with name in

Column B, street in Column C, city and state in Column D. By setting Relative Recording

(see Chapter 1, “Unleash the Power of Excel with VBA”) and using a hot key of Ctrl+A,

you can record this bit of useful code. The code is designed to copy one single address into

database format. The code also navigates the cell pointer to the name of the next address in

the list. Each time you press Ctrl+A, one address will be reformatted.

Sub Macro32010()
‘
‘ Macro32010 Macro
‘
‘ Keyboard Shortcut: Ctrl+Shift+A
‘
 ActiveCell.Offset(1, 0).Range(“A1”).Select
 Selection.Cut
 ActiveCell.Offset(-1, 1).Range(“A1”).Select
 ActiveSheet.Paste
 ActiveCell.Offset(2, -1).Range(“A1”).Select
 Selection.Cut
 ActiveCell.Offset(-2, 2).Range(“A1”).Select
 ActiveSheet.Paste
 ActiveCell.Offset(1, -2).Range(“A1:A3”).Select

Figure 5.9
It would be more useful
to have these addresses
in a database format to
use in a mail merge.

Chapter 5 Looping and Flow Control114

 Selection.EntireRow.Delete
 ActiveCell.Select
End Sub

Do not assume that the preceding code is suitable for a professional application. However, sometimes

macros are written just to automate a one-time mundane task.N
O

T
E

Without a macro, a lot of manual copying and pasting would be required. However, with

the preceding recorded macro, you can simply place the cell pointer on a name in Column

A and press Ctrl+Shift+A. That one address will be copied into three columns, and the cell

pointer will move to the start of the next address (see Figure 5.10).

Figure 5.10
After running the macro
once, one address is
moved into the proper
format, and the cell
pointer is positioned to
run the macro again.

When you use this macro, you will be able to process an address every second using the hot

key. However, when you need to process 5,000 addresses, you will not want to keep running

the same macro over and over.

In this case, a Do...Loop can be used to set up the macro to run continuously. You can have

VBA run this code continuously by enclosing the recorded code with Do at the top and Loop

at the end. Now you can sit back and watch the code perform this insanely boring task in

minutes rather than hours.

Note that this particular Do...Loop will run forever because there is no mechanism to stop

it. This will work for the task at hand because you can watch the progress on the screen and

press Ctrl+Break to stop execution when the program advances past the end of this data-

base.

This code uses a Do loop to fix the addresses.

Sub Macro3()
‘
‘ Macro3 Macro
‘ Macro recorded 10/29/2003 by Bill Jelen
‘ Move one address into database format.
‘ Then move the cell pointer to the start of the next address.
‘
‘ Keyboard Shortcut: Ctrl+Shift+A
‘
Do
 ActiveCell.Offset(1, 0).Range(“A1”).Select
 Selection.Cut
 ActiveCell.Offset(-1, 1).Range(“A1”).Select

115Do Loops

 ActiveSheet.Paste
 ActiveCell.Offset(2, -1).Range(“A1”).Select
 Selection.Cut
 ActiveCell.Offset(-2, 2).Range(“A1”).Select
 ActiveSheet.Paste
 ActiveCell.Offset(1, -2).Range(“A1:A3”).Select
 Selection.EntireRow.Delete
 ActiveCell.Select
Loop
End Sub

These examples are “quick and dirty” loops that are great for when you need to accomplish

a task quickly. The Do...Loop provides a number of options to allow you to have the pro-

gram stop automatically when it accomplishes the end of the task.

The first option is to have a line in the Do...Loop that detects the end of the dataset and

exits the loop. In the current example, this could be accomplished by using the Exit Do

command in an If statement. If the current cell is on a cell that is empty, you can assume

that you have reached the end of the data and stopped processing the loop:

Do
 If Not Selection.Value > “” Then Exit Do
 ActiveCell.Offset(1, 0).Range(“A1”).Select
 Selection.Cut
 ActiveCell.Offset(-1, 1).Range(“A1”).Select
 ActiveSheet.Paste
 ActiveCell.Offset(2, -1).Range(“A1”).Select
 Selection.Cut
 ActiveCell.Offset(-2, 2).Range(“A1”).Select
 ActiveSheet.Paste
 ActiveCell.Offset(1, -2).Range(“A1:A3”).Select
 Selection.EntireRow.Delete
 ActiveCell.Select
Loop
End Sub

Using the While or Until Clause in Do Loops
There are four variations of using While or Until. These clauses can be added to either the

Do statement or the Loop statement. In each case, the While or Until clause includes some

test that evaluates to True or False.

With a Do While <test expression>...Loop construct, the loop is never executed if <test

expression> is false. If you are reading records from a text file, you cannot assume that the

file has one or more records. Instead, you need to test to see whether you are already at the

end of file with the EOF function before you enter the loop:

‘ Read a text file, skipping the Total lines
 Open “C:\Invoice.txt” For Input As #1
 R = 1
 Do While Not EOF(1)
 Line Input #FileNumber, Data
 If Not Left (Data, 5) = “TOTAL” Then
 ‘ Import this row
 r = r + 1

Chapter 5 Looping and Flow Control116

 Cells(r, 1).Value = Data
 End If
 Loop
 Close #1

In this example, the Not keyword EOF(1) evaluates to True after there are no more records

to be read from Invoice.txt. Some programmers believe it is hard to read a program

that contains a lot of Nots. To avoid the use of Not, use the Do Until <test expression>

...Loop construct:

‘ Read a text file, skipping the Total lines
 Open “C:\Invoice.txt” For Input As #1
 R = 1
 Do Until EOF(1)
 Line Input #1, Data
 If Not (Data, 5) = “TOTAL” Then
 ‘ Import this row
 r = r + 1
 Cells(r, 1).Value = Data
 End If
 Loop
 Close #1

In other examples, you might always want the loop to be executed the first time. In these

cases, move the While or Until instruction to the end of the loop. This code sample asks

the user to enter sales amounts made that day. It continually asks them for sales amounts

until they enter a zero:

TotalSales = 0
Do
 x = InputBox(Prompt:=”Enter Amount of Next Invoice. Enter 0 when done.” _
 Type:=1)
 TotalSales = TotalSales + x
Loop Until x = 0
MsgBox “The total for today is $” & TotalSales

In the following loop, a check amount is entered, and then it looks for open invoices to

which the check can be applied. However, it is often the case that a single check is received

that covers several invoices. The following program sequentially applies the check to the

oldest invoices until 100 percent of the check has been applied:

‘ Ask for the amount of check received
AmtToApply = InputBox(“Enter Amount of Check”) + 0
‘ Loop through the list of open invoices.
‘ Apply the check to the oldest open invoices and Decrement AmtToApply
NextRow = 2
Do While AmtToApply > 0
 OpenAmt = Cells(NextRow, 3)
 If OpenAmt > AmtToApply Then
 ‘ Apply total check to this invoice
 Cells(NextRow, 4).Value = AmtToApply
 AmtToApply = 0
 Else
 Cells(NextRow, 4).Value = OpenAmt
 AmtToApply = AmtToApply - OpenAmt
 End If

117VBA Loop: For Each

 NextRow = NextRow + 1
Loop

Because you can construct the Do...Loop with the While or Until qualifiers at the beginning

or end, you have a great deal of subtle control over whether the loop is always executed

once, even when the condition is true at the beginning.

While...Wend Loops
While...Wend loops are included in VBA for backward compatibility. In the VBA help file,

Microsoft suggests that Do...Loops are more flexible. However, because you might encoun-

ter While...Wend loops in code written by others, a quick example is provided. In this loop,

the first line is always While <condition>. The last line of the loop is always Wend. Note

that there is no Exit While statement. In general, these loops are okay, but the Do...Loop

construct is more robust and flexible. Because the Do loop offers either the While or Until

qualifier, this qualifier can be used at the beginning or end of the loop, and there is the pos-

sibility to exit a Do loop early:

‘ Read a text file, adding the amounts
 Open “C:\Invoice.txt” For Input As #1
 TotalSales = 0
 While Not EOF(1)
 Line Input #1, Data
 TotalSales = TotalSales + Data
 Wend
 MsgBox “Total Sales=” & TotalSales
 Close #1

VBA Loop: For Each
Even though the VBA loop is an excellent loop, the macro recorder never records this type

of loop. VBA is an object-oriented language. It is common to have a collection of objects

in Excel such as a collection of worksheets in a workbook, cells in a range, pivot tables on a

worksheet, or data series on a chart.

This special type of loop is great for looping through all the items in the collection.

However, before discussing this loop in detail, you need to understand a special kind of

variable called object variables.

Object Variables
At this point, you have seen a variable that contains a single value. When you have a vari-

able such as TotalSales = 0, TotalSales is a normal variable and generally contains only a

single value. It is also possible to have a more powerful variable called an object variable that

holds many values. In other words, any property associated with the object is also associated

with the object variable.

Generally, developers do not take the time to declare variables. Many books implore you

to use the DIM statement to identify all your variables at the top of the procedure. This

Chapter 5 Looping and Flow Control118

allows you to specify that a certain variable be of a certain type, such as Integer or Double.

Although this saves a tiny bit of memory, it requires you to know up front which variables

you plan on using. However, developers tend to whip up a new variable on-the-fly as the

need arises. Even so, there are great benefits to declaring object variables. For example, the

VBA AutoComplete feature turns on if you declare an object variable at the top of your

procedure. The following lines of code declare three object variables: a worksheet, range,

and a pivot table:

Sub Test()
 Dim WSD as Worksheet
 Dim MyCell as Range
 Dim PT as PivotTable
 Set WSD = ThisWorkbook.Worksheets(“Data”)
 Set MyCell = WSD.Cells(Rows.Count, 1).End(xlUp).Offset(1, 0)
 Set PT = WSD.PivotTables(1)
 ...

In this code, you can see that more than an equals statement is used to assign object vari-

ables. You also need to use the Set statement to assign a specific object to the object vari-

able.

There are many good reasons to use object variables, not the least of which is the fact that

it can be a great shorthand notation. It is easier to have a many lines of code refer to WSD

rather than ThisWorkbook.Worksheets(“Data”). In addition, as mentioned earlier, the object

variable inherits all the properties of the object to which it refers.

The For Each...Loop employs an object variable rather than a Counter variable. The fol-

lowing code loops through all the cells in Column A. The code uses the .CurrentRegion

property to define the current region and then uses the .Resize property to limit the

selected range to a single column. The object variable is called Cell. Any name could be

used for the object variable, but Cell seems more appropriate than does something arbitrary

like Fred.

For Each cell in Range(“A1”).CurrentRegion.Resize(, 1)
 If cell.Value = “Total” Then
 cell.resize(1,8).Font.Bold = True
 End If
Next cell

This code sample searches all open workbooks, looking for a workbook where the first

worksheet is called Menu:

For Each wb in Workbooks
 If wb.Worksheets(1).Name = “Menu” Then
 WBFound = True
 WBName = wb.Name
 Exit For
End If
Next wb

119VBA Loop: For Each

In this code sample, all shapes on the current worksheet are deleted:

For Each Sh in ActiveSheet.Shapes
 Sh.Delete
Next Sh

This code sample deletes all pivot tables on the current sheet:

For Each pt in ActiveSheet.PivotTables
 pt.TableRange2.Clear
Next pt

This case study includes some useful procedures that make extensive use of loops.

The first procedure uses VBA’s Scripting.FileSystemObject to find all JPG picture files in a certain directory. Each

file is listed down a column in Excel.

Sub FindJPGFilesInAFolder()
 Dim fso As Object
 Dim strName As String
 Dim strArr(1 To 1048576, 1 To 1) As String, i As Long

 ‘ Enter the folder name here
 Const strDir As String = “C:\Artwork\”

 Let strName = Dir$(strDir & “*.jpg”)
 Do While strName <> vbNullString
 Let i = i + 1
 Let strArr(i, 1) = strDir & strName
 Let strName = Dir$()
 Loop
 Set fso = CreateObject(“Scripting.FileSystemObject”)
 Call recurseSubFolders(fso.GetFolder(strDir), strArr(), i)
 Set fso = Nothing
 If i > 0 Then
 Range(“A1”).Resize(i).Value = strArr
 End If

 ‘ Next, loop through all found files
 ‘ and break into path and filename
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
 For i = 1 To FinalRow
 ThisEntry = Cells(i, 1)
 For j = Len(ThisEntry) To 1 Step -1
 If Mid(ThisEntry, j, 1) = Application.PathSeparator Then
 Cells(i, 2) = Left(ThisEntry, j)

C A S E S T U D Y : L O O P I N G T H R O U G H A L L F I L E S I N A D I R E C T O R Y

Creating a list of all files in a directory used to be fairly simple using the FileSearch object. For inex-

plicable reasons, Microsoft stopped supporting FileSearch in Excel 2007.

N
O

T
E

Chapter 5 Looping and Flow Control120

Note that Application.PathSeparator is a backslash on Windows computers but might be

different if the code is running on a Macintosh.

Flow Control: Using If...Then...Else and Select Case
Another aspect of programming that will never be recorded by the macro recorder is the

concept of flow control. Sometimes you do not want every line of your program to be exe-

cuted every time you run the macro. VBA offers two excellent choices for flow control: the

If...Then...Else construct and the Select Case construct.

 Cells(i, 3) = Mid(ThisEntry, j + 1)
 Exit For
 End If
 Next j
 Next i

End Sub
Private Sub recurseSubFolders(ByRef Folder As Object, _
 ByRef strArr() As String, _
 ByRef i As Long)
Dim SubFolder As Object
Dim strName As String
For Each SubFolder In Folder.SubFolders
 Let strName = Dir$(SubFolder.Path & “*.jpg”)
 Do While strName <> vbNullString
 Let i = i + 1
 Let strArr(i, 1) = SubFolder.Path & strName
 Let strName = Dir$()
 Loop
 Call recurseSubFolders(SubFolder, strArr(), i)
Next
End Sub

The idea in this situation is to organize the photos into new folders. In Column D, if you want to move a picture to a new

folder, type the path of that folder. The following For…Each loop takes care of copying the pictures. Each time through

the loop, the object variable named Cell will contain a reference to a cell in Column A. You can use Cell.Offset(0,

3) to return the value from the cell three columns to the right of the range represented by the variable Cell:

Sub CopyToNewFolder()
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
 For Each Cell In Range(“A2:A” & FinalRow)
 OrigFile = Cell.Value
 NewFile = Cell.Offset(0, 3) & Application.PathSeparator & _
 Cell.Offset(0, 2)
 FileCopy OrigFile, NewFile
 Next Cell
End Sub

121Flow Control: Using If...Then...Else and Select Case

Basic Flow Control: If...Then...Else
The most common device for program flow control is the If statement. For example, sup-

pose you have a list of products as shown in Figure 5.11. You want to loop through each

product in the list and copy it to either a Fruits list or Vegetables list. Beginning program-

mers might be tempted to loop through the rows twice—once to look for fruit and a second

time to look for vegetables. However, there is no need to loop through twice because you

can use an If...Then...Else construct on a single loop to copy each row to the correct

place.

Conditions
Any If statement needs a condition that is being tested. The condition should always evalu-

ate to TRUE or FALSE. Here are some examples of simple and complex conditions:

■ If Range(“A1”).Value = “Title” Then

■ If Not Range(“A1”).Value = “Title” Then

■ If Range(“A1”).Value = “Title” And Range(“B1”).Value = “Fruit” Then

■ If Range(“A1”).Value = “Title” Or Range(“B1”).Value = “Fruit” Then

If...Then...End If

After the If statement, you may include one or more program lines that will be executed

only if the condition is met. You should then close the If block with an End If line. Here is

a simple example of an If statement:

Sub ColorFruitRedBold()
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

Figure 5.11
A single loop can look for
fruits or vegetables.

Chapter 5 Looping and Flow Control122

 For i = 2 To FinalRow
 If Cells(i, 1).Value = “Fruit” Then
 Cells(i, 1).Resize(1, 3).Font.Bold = True
 Cells(i, 1).Resize(1, 3).Font.ColorIndex = 3
 End If
 Next i

 MsgBox “Fruit is now bold and red”
End Sub

Either/Or Decisions: If...Then...Else...End If
Sometimes you will want to do one set of statements if the condition is true, and another

set of statements if the condition is not true. To do this with VBA, the second set of condi-

tions would be coded after the Else statement. There is still only one End If statement

associated with this construct. For example, you could use the following code if you want to

color the fruit red and the vegetables green:

Sub FruitRedVegGreen()
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

 For i = 2 To FinalRow
 If Cells(i, 1).Value = “Fruit” Then
 Cells(i, 1).Resize(1, 3).Font.ColorIndex = 3
 Else
 Cells(i, 1).Resize(1, 3).Font.ColorIndex = 50
 End If
 Next i

 MsgBox “Fruit is red / Veggies are green”
End Sub

Using If...Else If...End If for Multiple Conditions
Notice that our product list includes one item that is classified as an herb. You have three

conditions that can be used to test items on the list. It is possible to build an If...End If

structure with multiple conditions. First, test to see whether the record is a fruit. Next, use

an Else If to test whether the record is a vegetable. Then, test to see whether the record is

an herb. Finally, if the record is none of those, highlight the record as an error.

Sub MultipleIf()
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

 For i = 2 To FinalRow
 If Cells(i, 1).Value = “Fruit” Then
 Cells(i, 1).Resize(1, 3).Font.ColorIndex = 3
 ElseIf Cells(i, 1).Value = “Vegetable” Then
 Cells(i, 1).Resize(1, 3).Font.ColorIndex = 50
 ElseIf Cells(i, 1).Value = “Herbs” Then
 Cells(i, 1).Resize(1, 3).Font.ColorIndex = 5
 Else
 ‘ This must be a record in error
 Cells(i, 1).Resize(1, 3).Interior.ColorIndex = 6

123Flow Control: Using If...Then...Else and Select Case

 End If
 Next i

 MsgBox “Fruit is red / Veggies are green / Herbs are blue”
End Sub

Using Select Case...End Select for Multiple Conditions
When you have many different conditions, it becomes unwieldy to use many Else If state-

ments. For this reason, VBA offers another construct known as the Select Case construct.

In your running example, always check the value of the Class in column A. This value is

called the test expression. The basic syntax of this construct starts with the words Select

Case followed by the test expression:

Select Case Cells(i, 1).Value

Thinking about this problem in English, you might say, “In cases where the record is fruit,

color the record with red.” VBA uses a shorthand version of this. You write the word Case

followed by the literal “Fruit”. Any statements that follow Case “Fruit” will be executed

whenever the test expression is a fruit. After these statements, you have the next Case state-

ment: Case “Vegetables”. You continue in this fashion, writing a Case statement followed

by the program lines that will be executed if that case is true.

After you have listed all the possible conditions you can think of, you may optionally

include a Case Else section at the end. The Case Else section includes what the program

should do if the test expression matches none of your cases. Finally, close the entire con-

struct with the End Select statement.

The following program does the same operation as the previous macro but uses a Select

Case statement:

Sub SelectCase()
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

 For i = 2 To FinalRow
 Select Case Cells(i, 1).Value
 Case “Fruit”
 Cells(i, 1).Resize(1, 3).Font.ColorIndex = 3
 Case “Vegetable”
 Cells(i, 1).Resize(1, 3).Font.ColorIndex = 50
 Case “Herbs”
 Cells(i, 1).Resize(1, 3).Font.ColorIndex = 5
 Case Else
 End Select
 Next i

 MsgBox “Fruit is red / Veggies are green / Herbs are blue”
End Sub

Chapter 5 Looping and Flow Control124

Complex Expressions in Case Statements
It is possible to have fairly complex expressions in Case statements. You might want to per-

form the same actions for all berry records:

Case “Strawberry”, “Blueberry”, “Raspberry”
 AdCode = 1

If it makes sense, you might code a range of values in the Case statement:

Case 1 to 20
 Discount = 0.05
Case 21 to 100
 Discount = 0.1

You can include the keyword Is and a comparison operator, such as > or <:

Case Is < 10
 Discount = 0
Case Is > 100
 Discount = 0.2
Case Else
 Discount = 0.10

Nesting If Statements
It is not only possible, but also common to nest an If statement inside another If state-

ment. In this situation, it is important to use proper indenting. You will often find that you

have several End If lines at the end of the construct. By having proper indenting, it is easier

to tell which End If is associated with a particular If.

The final macro has a lot of logic. Our discount rules are as follows:

 ■ For Fruit, quantities under 5 cases get no discount.

 ■ Quantities from 5 to 20 cases get a 10 percent discount.

 ■ Quantities above 20 cases get a 15 percent discount.

 ■ For Herbs, quantities under 10 cases get no discount.

 ■ Quantities from 10 cases to 15 cases get a 3 percent discount.

 ■ Quantities above 15 cases get a 6 percent discount.

 ■ For Vegetables except Asparagus, 5 cases and above earn a 12 percent discount.

 ■ Asparagus requires 20 cases for a discount of 12 percent.

 ■ None of the discounts applies if the product is on sale this week. The sale price is

25 percent off the normal price. This week’s sale items are Strawberry, Lettuce, and

Tomatoes.

The code to execute this logic follows:

Sub ComplexIf()
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

 For i = 2 To FinalRow

125Flow Control: Using If...Then...Else and Select Case

 ThisClass = Cells(i, 1).Value
 ThisProduct = Cells(i, 2).Value
 ThisQty = Cells(i, 3).Value

 ‘ First, figure out if the item is on sale
 Select Case ThisProduct
 Case “Strawberry”, “Lettuce”, “Tomatoes”
 Sale = True
 Case Else
 Sale = False
 End Select

 ‘ Figure out the discount
 If Sale Then
 Discount = 0.25
 Else
 If ThisClass = “Fruit” Then
 Select Case ThisQty
 Case Is < 5
 Discount = 0
 Case 5 To 20
 Discount = 0.1
 Case Is > 20
 Discount = 0.15
 End Select
 ElseIf ThisClass = “Herbs” Then
 Select Case ThisQty
 Case Is < 10
 Discount = 0
 Case 10 To 15
 Discount = 0.03
 Case Is > 15
 Discount = 0.05
 End Select
 ElseIf ThisClass = “Vegetables” Then
 ‘ There is a special condition for asparagus
 If ThisProduct = “Asparagus” Then
 If ThisQty < 20 Then
 Discount = 0
 Else
 Discount = 0.12
 End If
 Else
 If ThisQty < 5 Then
 Discount = 0
 Else
 Discount = 0.12
 End If
 End If ‘ Is the product asparagus or not?
 End If ‘ Is the product a vegetable?
 End If ‘ Is the product on sale?

 Cells(i, 4).Value = Discount

 If Sale Then
 Cells(i, 4).Font.Bold = True
 End If

Chapter 5 Looping and Flow Control126

 Next i

 Range(“D1”).Value = “Discount”

 MsgBox “Discounts have been applied”

End Sub

Referring to Cells: A1 Versus R1C1
References

We can trace the A1 style of referencing back to

VisiCalc. Dan Bricklin and Bob Frankston used A1

to refer to the cell in the upper-left corner of the

spreadsheet. Mitch Kapor used this same address-

ing scheme in Lotus 1-2-3. Upstart Multiplan from

Microsoft attempted to buck the trend and used

something called R1C1-style addressing. In R1C1

addressing, the cell known as A1 is referred to as

R1C1 because it is in Row 1, Column 1.

With the dominance of Lotus 1-2-3 in the 1980s

and early 1990s, the A1 style became the standard.

Microsoft realized it was fighting a losing battle and

eventually offered either R1C1-style addressing or

A1-style addressing in Excel. When you open Excel

today, the A1 style is used by default. Officially,

however, Microsoft supports both styles of address-

ing.

You would think that this chapter would be a non-

issue. Anyone who uses the Excel interface would

agree that the R1C1 style is dead. However, we

have what on the face of it seems to be an annoying

problem: The macro recorder records formulas in

the R1C1 style. So you might be thinking that you

just need to learn R1C1 addressing so that you can

read the recorded code and switch it back to the

familiar A1 style.

I have to give Microsoft credit. After you under-

stand R1C1-style formulas, they are actually more

efficient, especially when you are dealing with writ-

ing formulas in VBA. Using R1C1-style addressing

allows you to write more efficient code. Plus, there

are some features such as setting up array formu-

las where you are required to enter the formula in

R1C1 style.

R1C1-Style Formulas

6

Chapter 6 R1C1-Style Formulas128

I can hear the collective groan from Excel users everywhere. You could skip these pages

of this old-fashioned addressing style if it were only an annoyance or an efficiency issue.

However, because it is necessary to understand R1C1 addressing to effectively use impor-

tant features such as array formulas, you have to dive in and learn this style.

Switching Excel to Display R1C1-Style References
To switch to R1C1-style addressing, select Excel Options from the File menu. In the

Formulas category, select the R1C1 reference style check box (see Figure 6.1).

R1C1 Reference Style

Figure 6.1
Selecting the R1C1
reference style on the
Formulas category of
the Excel Options dialog
causes Excel to revert to
R1C1 style in the Excel
user interface.

After you switch to R1C1 style, the column letters A, B, C across the top of the worksheet

are replaced by numbers 1, 2, 3 (see Figure 6.2).

Figure 6.2
In R1C1 style, the column
letters are replaced by
numbers.

In this format, the cell that you know as B5 is called R5C2 because it is in Row 5,

Column 2.

Every couple of weeks, someone manages to accidentally turn this option on, and we get an

urgent support request at MrExcel. This style is foreign to 99 percent of spreadsheet users.

129The Miracle of Excel Formulas

The Miracle of Excel Formulas
Automatically recalculating thousands of cells is the main benefit of electronic spreadsheets

over the green ledger paper used up until 1979. However, a close second-prize award would

be that you can enter one formula and copy that formula to thousands of cells.

Enter a Formula Once and Copy 1,000 Times
Consider this simple worksheet in Figure 6.3. Enter a simple formula such as =C4*B4 in cell

D4, double-click the AutoFill handle, and the formula intelligently changes as at is copied

down the range.

Figure 6.3
Double-click the AutoFill
handle, and Excel intel-
ligently copies this
relative-reference formula
down the column.

The formula in cell F4 includes both relative and absolute formulas:

=IF(E4,ROUND(D4*B1,2),0). Thanks to the dollar signs inserted in cell B1, you can copy

down this formula, and it always multiplies the Total Price in this row by the tax rate in cell

B1.

The numeric results in Figure 6.4 are achieved by the formulas shown in Figure 6.5.

Ctrl+` in Excel switches between Normal view and Formula view.

T
IP

Considering that you had to enter formulas only in Rows 4 and 10, it is amazing that Excel

was able to intelligently copy the formulas down the column.

Excel users take this behavior for granted, but people in beginning Excel classes are amazed

that the formula =F4+D4 in cell G4 automatically changed to =F5+D5 when it was copied to

cell G5.

Chapter 6 R1C1-Style Formulas130

The Secret: It’s Not That Amazing
Remember that Excel does everything in R1C1-style formulas. Excel shows addresses and

formulas in A1 style merely because it needs to adhere to the standard made popular by

VisiCalc and Lotus.

If you switch the worksheet in Figure 6.5 to use R1C1 notation, you will notice that the

“different” formulas in D4:D9 are all actually identical formulas in R1C1 notation. The

same is true of F4:F9 and G4:G9.

Use the Options dialog to change the sample worksheet to R1C1-style addresses. If you

examine the formulas in Figure 6.6, you will see that in R1C1 language, every formula

in Column D is identical. Given that Excel is storing the formulas in R1C1 style, copy-

ing them, and then merely translating to A1 style for us to understand, it is no longer that

amazing that Excel can easily manipulate A1-style formulas as it does.

This is one of the reasons why R1C1-style formulas are more efficient in VBA. You can

enter the same formula in an entire range of data in a single statement.

Figure 6.4
These results in Columns
D, F, and G are achieved
by the formulas shown in
Figure 6.5.

Figure 6.5
Press Ctrl+` to switch
to showing formulas
rather than their results.
It is amazing that Excel
adjusts the cell references
in each formula as you
copy down the column.

Figure 6.6
The same formulas in
R1C1 style. Note that
every formula in Column
4 or Column 6 is the same
as all other formulas in
that column.

131The Miracle of Excel Formulas

Think about how you would set this spreadsheet up in the Excel interface. First, you enter a formula in cells D4, F4, G4.

Next, you copy these cells, and paste them the rest of the way down the column. The code might look something like this:

Sub A1Style()
 ‘ Locate the FinalRow
 FinalRow = Cells(Rows.Count, 2).End(xlUp).Row
 ‘ Enter the first formula
 Range(“D4”).Formula = “=B4*C4”
 Range(“F4”).Formula = “=IF(E4,ROUND(D4*B1,2),0)”
 Range(“G4”).Formula = “=F4+D4”
 ‘ Copy the formulas from Row 4 down to the other cells
 Range(“D4”).Copy Destination:=Range(“D5:D” & FinalRow)
 Range(“F4:G4”).Copy Destination:=Range(“F5:G” & FinalRow)
 ‘ Enter the Total Row
 Cells(FinalRow + 1, 1).Value = “Total”
 Cells(FinalRow + 1, 6).Formula = “=SUM(G4:G” & FinalRow & “)”
End Sub

In this code, it takes three lines to enter the formulas at the top of the row and then another two lines to copy the formu-

las down the column.

The equivalent code in R1C1 style allows the formulas to be entered for the entire column in a single statement.

Remember, the advantage of R1C1 style formulas is that all the formulas in Columns D, F, and most of G are identical:

Sub R1C1Style()
 ‘ Locate the FinalRow
 FinalRow = Cells(Rows.Count, 2).End(xlUp).Row
 ‘ Enter the first formula
 Range(“D4:D” & FinalRow).FormulaR1C1 = “=RC[-1]*RC[-2]”
 Range(“F4:F” & FinalRow).FormulaR1C1 = “=IF(RC[-1],ROUND(RC[-2]*R1C2,2),0)”
 Range(“G4:G” & FinalRow).FormulaR1C1 = “=RC[-1]+RC[-3]”
 ‘ Enter the Total Row
 Cells(FinalRow + 1, 1).Value = “Total”
 Cells(FinalRow + 1, 6).FormulaR1C1 = “=SUM(R4C:R[-1]C)”
End Sub

In reality, you do not need to enter A1-style formulas in the top row and then copy them down. It seems counterintuitive,

but when you specify an A1-style formula, Microsoft internally converts the formula to R1C1 and then enters that formula

in the entire range. Thus, you can actually add the “same” A1-style formula to an entire range in a single line of code.

Sub A1StyleModified()
 ‘ Locate the FinalRow
 FinalRow = Cells(Rows.Count, 2).End(xlUp).Row
 ‘ Enter the first formula
 Range(“D4:D” & FinalRow).Formula = “=B4*C4”
 Range(“F4:F” & FinalRow).Formula = “=IF(E4,ROUND(D4*B1,2),0)”
 Range(“G4:G” & FinalRow).Formula = “=F4+D4”
 ‘ Enter the Total Row
 Cells(FinalRow + 1, 1).Value = “Total”
 Cells(FinalRow + 1, 6).Formula = “=SUM(G4:G” & FinalRow & “)”
End Sub

C A S E S T U D Y : E N T E R I N G A 1 V E R S U S R 1 C 1 I N V B A

Chapter 6 R1C1-Style Formulas132

Explanation of R1C1 Reference Style
An R1C1-style reference includes the letter R to refer to row and the letter C to refer to

column. Because the most common reference in a formula is a relative reference, let’s look

at relative references in R1C1 style first.

Using R1C1 with Relative References
Imagine you are entering a formula in a cell. To point to a cell in a formula, you use the let-

ters R and C. After each letter, enter the number of rows or columns in square brackets.

The following list explains the “rules” for using R1C1 relative references:

 ■ For columns, a positive number means to move to the right a certain number of col-

umns, and a negative number means to move to the left a certain number of columns.

From cell E5, use RC[1] to refer to F5 and RC[-1] to refer to D5.

 ■ For rows, a positive number means to move down the spreadsheet a certain number of

rows. A negative number means to move toward the top of the spreadsheet a certain

number of rows. From cell E5, use R[1]C to refer to E6 and use cell R[-1]C to refer to

E4.

 ■ If you leave off the square brackets for either the R or the C, it means that you are

pointing to a cell in the same row or column as the cell with the formula

 ■ If you enter =R[-1]C[-1] in cell E5, you are referring to a cell one row up and one col-

umn to the left. This would be cell D4.

 ■ If you enter =RC[1] in cell E5, you are referring to a cell in the same row, but one col-

umn to the right. This would be cell F5.

 ■ If you enter =RC in cell E5, you are referring to a cell in the same row and column,

which is cell E5 itself. You would generally never do this because it would create a cir-

cular reference.

Figure 6.7 shows how you would enter a reference in cell E5 to point to various cells

around E5.

Note that although you are asking for a formula of =B4*C4 entered in D4:D1000, Excel enters this

formula in Row 4 and appropriately adjusts the formula for the additional rows.
N

O
T

E

133Explanation of R1C1 Reference Style

You can use R1C1 style to refer to a range of cells. If you want to add up the 12 cells to the

left of the current cell, the formula is this:

=SUM(RC[-12]:RC[-1])

Using R1C1 with Absolute References
An absolute reference is one where the row and column remain fixed when the formula is

copied to a new location. In A1-style notation, Excel uses a $ before the row number or col-

umn letter to keep that row or column absolute as the formula is copied.

To always refer to an absolute row or column number, just leave off the square brackets.

This reference refers to cell B3 no matter where it is entered:

=R3C2

Using R1C1 with Mixed References
A mixed reference is one where the row is fixed and the column is allowed to be relative, or

where the column is fixed and the row is allowed to be relative. This will be useful in many

situations.

Imagine you have written a macro to import Invoice.txt into Excel. Using .End(xlUp),

you find where the total row should go. As you are entering totals, you know that you want

to sum from the row above the formula up to Row 2. The following code would handle

that:

Sub MixedReference()
 TotalRow = Cells(Rows.Count, 1).End(xlUp).Row + 1
 Cells(TotalRow, 1).Value = “Total”
 Cells(TotalRow, 5).Resize(1, 3).FormulaR1C1 = “=SUM(R2C:R[-1]C)”
End Sub

In this code, the reference R2C:R[1]C indicates that the formula should add from Row 2 in

the same column to the row just above the formula in the current column. Do you see the

advantage to R1C1 formulas in this case? A single R1C1 formula with a mixed reference

can be used to easily enter a formula to handle an indeterminate number of rows of data

(see Figure 6.8).

One Row Above, Same Column

Same Row, Two

Columns to the Left

Figure 6.7
Here are various relative
references. These would
be entered in cell E5 to
describe each cell around
E5.

Chapter 6 R1C1-Style Formulas134

Referring to Entire Columns or Rows with R1C1 Style
You will occasionally write a formula that refers to an entire column. For example, you

might want to know the maximum value in Column G. If you don’t know how many rows

you will have in G, you can write =MAX($G:$G) in A1 style or =MAX(C7) in R1C1 style. To

find the minimum value in Row 1, use =MIN($1:$1) in A1 style or =MIN(R1) in R1C1 style.

You can use relative reference for either rows or columns. To find the average of the row

above the current cell, use =AVERAGE(R[-1]).

Replacing Many A1 Formulas with a Single R1C1 Formula
After you get used to R1C1-style formulas, they actually seem a lot more intuitive to build.

One classic example to illustrate R1C1-style formulas is building a multiplication table. It is

easy to build a multiplication table in Excel using a single mixed-reference formula.

Building the Table

Enter the numbers 1 through 12 going across B1:M1. Copy and transpose these so the same

numbers are going down A2:A13. Now the challenge is to build a single formula that works

in all cells of B2:M13 and that shows the multiplication of the number in Row 1 times the

number in Column 1. Using A1-style formulas, you must press the F4 key five times to get

the dollar signs in the proper locations. The following is a far simpler formula in R1C1

style:

Sub MultiplicationTable()
 ‘ Build a multiplication table using a single formula
 Range(“B1:M1”).Value = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
 Range(“B1:M1”).Font.Bold = True
 Range(“B1:M1”).Copy
 Range(“A2:A13”).PasteSpecial Transpose:=True
 Range(“B2:M13”).FormulaR1C1 = “=RC1*R1C”
 Cells.EntireColumn.AutoFit
End Sub

The R1C1-style reference =RC1*R1C could not be simpler. In English, it is saying, “Take this

row’s Column 1 and multiply it by Row 1 of this column.” It works perfectly to build the

multiplication table shown in Figure 6.9.

Figure 6.8
After running the macro,
the formulas in Columns
E:G of the total row
will have a reference to
a range that is locked
to Row 2, but all other
aspects are relative.

135Explanation of R1C1 Reference Style

An Interesting Twist

Try this experiment. Move the cell pointer to F6. Turn on macro recording using the

Record Macro button on the Developer tab. Click the Use Relative Reference button on

the Developer tab. Enter the formula =A1 and press Ctrl+Enter to stay in F6. Click the Stop

Recording button on the floating toolbar.

You get this single-line macro, which enters a formula that points to a cell five rows up and

five columns to the left:

Sub Macro1()
 ActiveCell.FormulaR1C1 = “=R[-5]C[-5]”
End Sub

Now, move the cell pointer to cell A1 and run the macro that you just recorded. You might

think that pointing to a cell five rows above A1 would lead to the ubiquitous Run Time

Error 1004. But it doesn’t! When you run the macro, the formula in cell A1 is pointing to

=XFA1048572, as shown in Figure 6.10, meaning that R1C1-style formulas actually wrap

from the left side of the workbook to the right side. I cannot think of any instance where

this would be actually useful, but for those of you who rely on Excel to error out when you

ask for something that does not make sense, be aware that your macro will happily provide

a result and probably not the one that you expected!

Figure 6.9
The macro creates a
multiplication table.
The formula in B2 uses
two mixed references:
=$A2*B$1.

After running the macro and producing the multiplication table in Figure 6.9, note that Excel still has

the copied range from line 2 of the macro as the active clipboard item. If the user of this macro selects

a cell and presses Enter, the contents of those cells will copy to the new location. However, this is

generally not desirable. To get Excel out of Cut/Copy mode, add this line of code before your programs

ends:

Application.CutCopyMode = False

C A U T I O N

Chapter 6 R1C1-Style Formulas136

Remembering Column Numbers Associated with Column Letters
I like these formulas enough to use them regularly in VBA. I don’t like them enough to

change my Excel interface over to R1C1-style numbers. So, I routinely have to know that

the cell known as U21 is really R21C21.

Knowing that U is the 21st letter of the alphabet is not something that comes naturally. We

have 26 letters, so A is 1 and Z is 26. M is the halfway point of the alphabet and is Column

13. The rest of the letters are not particularly intuitive. If you play this little game for a few

minutes each day, soon you will memorize the column numbers:

Sub QuizColumnNumbers()
 Do
 i = Int(Rnd() * 26) + 1
 Ans = InputBox(“What column number is the letter “ & _
 Chr(64 + i) & “?”)
 If Ans = “” Then Exit Do
 If Not (Ans + 0) = i Then
 MsgBox “Letter “ & Chr(64 + i) & “ is column # “ & i
 End If
 Loop
End Sub

If memorizing column numbers doesn’t sound fun, or even if you have to figure out the col-

umn number of Column DGX someday, there is a straightforward way to do so using the

Excel interface. Move the cell pointer to cell A1. Hold down the Shift key and start press-

ing the right-arrow key. For the first screen of columns, the column number appears in the

name box to the left of the formula bar (see Figure 6.11).

Figure 6.10
The formula to point to
five rows above B1 wraps
around to the bottom of
the worksheet.

F Is the Sixth ColumnName Box

Figure 6.11
While you select cells
with the keyboard,
the Name box displays
how many columns are
selected for the first
screen full of columns.

As you keep pressing the right-arrow key beyond the first screen, a ToolTip box to the right

of the current cell tells you how many columns are selected. When you get to Column CS,

it informs you that you are at Column 97 (see Figure 6.12).

You could also enter =COLUMN() in a cell to find the column number.

137Array Formulas Require R1C1 Formulas

Array Formulas Require R1C1 Formulas

The array formula in E20, shown in Figure 6.13, is a formula that does 18 multiplica-

tions and then sums the result. It looks like this would be an illegal formula. In fact, if you

happen to enter it without using Ctrl+Shift+Enter, you get the expected #VALUE! error.

However, if you enter it with Ctrl+Shift+Enter, the formula miraculously multiplies row by

row and then sums the result.

ToolTip: Column CS Is the 97th Column

Figure 6.12
After the first screen of
columns, a tool tip bar
keeps track of the column
number.

You do not type the curly braces when entering the formula.

N
O

T
E

Figure 6.13
The array formula in
E20 does 18 multiplica-
tions and then sums
them. You must use
Ctrl+Shift+Enter to enter
this formula.

The code to enter these formulas follows. Although the formulas appear in the user inter-

face in A1-style notation, you must use R1C1-style notation for entering array formulas:

Sub EnterArrayFormulas()
 ‘ Add a formula to multiply unit price x quantity
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

Array formulas are powerful “super-formulas.” You have to use Ctrl+Shift+Enter to enter
them. If you are not familiar with array formulas, they look like they should not work.

Chapter 6 R1C1-Style Formulas138

 Cells(FinalRow + 1, 5).FormulaArray = “=SUM(R2C[-1]:R[-1]C[-1]*R2C:R[-1] _
 C)”
End Sub

Use this trick to quickly find the R1C1 formula. Enter a regular A1-style formula or an array formula in

any cell in Excel. Select that cell. Switch to the VBA editor. Press Ctrl+G to display the Immediate win-

dow. Type Print ActiveCell.FormulaR1C1 and press Enter. Excel will convert the formula in

the formula bar to an R1C1 style formula. You also can use a question mark instead of Print.

T
IP

If It Has Changed in the Front End, It
Has Changed in VBA

Thankfully, not too much of VBA doesn’t work

anymore, but a few things in the object model have

changed. For most items, it’s obvious that, because

the Excel user interface changed, the VBA has

changed.

See Chapter 8, “Create and Manipulate Names in VBA,” for more infor-
mation on working with names.

The Ribbon
If you have been working with a legacy version of

Excel, the Ribbon is one of the first changes you’ll

notice when you open Excel 2010. Although the

CommandBars object does still work to a point, if you

want to flawlessly integrate your custom controls

into the Ribbon, you need to make some major

changes.

See Chapter 26, “Customizing the Ribbon to Run Macros,” for more
information.

Charts
Charts have many new features that are not

backward-compatible with legacy versions of

Excel. There’s also a new type of mini-chart called

Sparklines that are inserted within a cell.

What Is New in Excel 2010
and What Has Changed

7

Chapter 7 What Is New in Excel 2010 and What Has Changed140

Sparklines are not backward-compatible, not even to Excel 2007.

See Chapter 11, “Creating Charts,” for more information.

Pivot Tables
Pivot tables have a few new features available that aren’t backward-compatible, such as sub-

totals at the top and the report layout options.

Tables 13.1 and 13.2 in Chapter 13, “Using VBA to Create Pivot Tables,” list the new methods and properties in Excel 2010 that you have
to watch out for if you need to make a backward-compatible workbook.

Slicers
A slicer is a new feature in Excel 2010 that is not backward-compatible, not even to Excel

2007. It’s useful in pivot tables, allowing for an easy to see and use filtering option. If you

open a workbook with a slicer in an older version of Excel, the slicer is replaced with a

shape, including text explaining what the shape is there for and that the feature is not avail-

able.

See Chapter 13, “Using VBA to Create Pivot Tables,” for more information.

Conditional Formatting
Conditional formatting has been completely reinvented. Where we were once limited to

three conditions and changing a few cell formatting options, it seems now the sky is the

limit.

To get an idea of how much the conditional formatting feature has changed, consider this: Excel 2010 in

Depth (Sams, ISBN 0789743086) has a 30-page chapter just to review the options available. Compare

that to almost any Excel 2003 or earlier book, in which conditional formatting coverage was just a foot-

note or two scattered throughout the book.

N
O

T
E

This feature has come a long way, which means so has the code. Compare the following

two recorded macros. They both are relatively simple. A cell’s fill is changed to red if the

value in the cell is between 1 and 5. Notice, however, how much more code is involved with

the new options that you now need to set in 2010.

Excel 2003 recorded macro:

Sub Macro2()

141If It Has Changed in the Front End, It Has Changed in VBA

‘
‘ Macro2 Macro
‘

‘
 Selection.FormatConditions.Delete
 Selection.FormatConditions.Add Type:=xlCellValue, Operator:=xlBetween, _
 Formula1:=”1”, Formula2:=”5”
 Selection.FormatConditions(1).Interior.ColorIndex = 3
 ActiveCell.FormulaR1C1 = “2”
 Range(“A2”).Select
End Sub

Excel 2010 recorded macro:

Sub Macro2()
‘
‘ Macro2 Macro
‘

‘
 Selection.FormatConditions.AddColorScale ColorScaleType:=2
 Selection.FormatConditions(Selection.FormatConditions.Count).SetFirstPri-
ority
 Selection.FormatConditions(1).ColorScaleCriteria(1).Type = _
 xlConditionValueNumber
 Selection.FormatConditions(1).ColorScaleCriteria(1).Value = 1
 With Selection.FormatConditions(1).ColorScaleCriteria(1).FormatColor
 .Color = 255
 .TintAndShade = 0
 End With
 Selection.FormatConditions(1).ColorScaleCriteria(2).Type = _
 xlConditionValueNumber
 Selection.FormatConditions(1).ColorScaleCriteria(2).Value = 5
 With Selection.FormatConditions(1).ColorScaleCriteria(2).FormatColor
 .Color = 255
 .TintAndShade = 0
 End With
 ActiveCell.FormulaR1C1 = “2”
 Range(“A2”).Select
End Sub

Tables
Tables are a convenient way to deal with data that is already set up as tables (multiple

records set up beneath a row of column headers). For this new functionality, there are cor-

responding new objects, properties, and methods.

To learn more, see “Referencing Tables,” p. 77 and “Tables,” p. 153.

Sorting
Because of the increased sorting options such as sorting by color, sort code has gone

through a few changes. Instead of a single line of code with a few options to set, you need

to configure the sort options and then do the sort, as shown here:

Chapter 7 What Is New in Excel 2010 and What Has Changed142

Sub Macro2()
‘
‘ Macro2 Macro
‘

‘
 Range(“A1:A4”).Select
 ‘clear current sort options
 ActiveWorkbook.Worksheets(“Sheet1”).Sort.SortFields.Clear
 ‘set the new sort option - this is just a simple A-Z sort
 ActiveWorkbook.Worksheets(“Sheet1”).Sort.SortFields.Add Key:=Range(“A1”), _
 SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal
 ‘do the actual sort
 With ActiveWorkbook.Worksheets(“Sheet1”).Sort
 .SetRange Range(“A1:A4”)
 .Header = xlYes
 .MatchCase = False
 .Orientation = xlTopToBottom
 .SortMethod = xlPinYin
 .Apply
 End With
End Sub

SmartArt
SmartArt is the new function that has replaced the Diagram feature of legacy versions of

Excel. Recording is very limited, but it will help you find the correct schema. After that, the

recorder doesn’t capture text entry or format changes.

The following example created the art in Figure 7.1. The name of the schema used is

hChevron3. I changed the schemecolor for the middle chevron, leaving the other two with

the default colors:

Sub AddDiagram()
With ActiveSheet
 Call .Shapes.AddSmartArt(Application.SmartArtLayouts(_
 “urn:microsoft.com/office/officeart/2005/8/layout/hChevron3”)).Select
 .Shapes.Range(Array(“Diagram 5”)).GroupItems(1).TextEffect.Text = “Bill”
 .Shapes.Range(Array(“Diagram 5”)).GroupItems(3).TextEffect.Text = “Tracy”
 With .Shapes.Range(Array(“Diagram 5”)).GroupItems(2)
 .Fill.BackColor.SchemeColor = 7
 .TextEffect.Text = “Barb”
 End With
End With
End Sub

143Learning the New Objects and Methods

Learning the New Objects and Methods
Excel’s VBA Help files have several tables of changes for objects and methods in Excel to

which you can refer. They’re even broken up by version number, as shown in Figure 7.2.

To access these tables, click the Help icon in the VB Editor toolbar and select What’s New

from the dialog that appears.

Figure 7.1
The macro recorder is
limited when recording
the creation of SmartArt.
You’ll need to trace
through the object’s
properties to find what
you need.

Figure 7.2
Excel’s VBA Help has sev-
eral sections to help you
find what will and won’t
work in the new Excel.

When you review the “Object Model Changes Since” sections, you may be wondering what

Microsoft means when they say an item’s status is Hidden (see Figure 7.3). If you use one

of these items in your code, such as FileSearch, the program will compile just fine, but it

won’t run in Excel 2010.

Microsoft has allowed you to include a Hidden item in your code for legacy usage and will compile it,

but when you try to run it, the program won’t know what to do with it. Unless you have some kind of

compatibility mode check in your code, your program will debug at runtime.

C A U T I O N

Chapter 7 What Is New in Excel 2010 and What Has Changed144

Compatibility Mode
With all the changes in Excel 2010, now more than ever it’s important to verify the applica-

tion’s version. Two ways you can do this are Version and Excel8CompatibilityMode.

Dealing with Compatibility Issues

Creating a compatibility mode workbook can be problematic. Most code will still run in legacy versions of Excel, as long

as the program doesn’t run into an item from the Excel 2010 object model. If you use any items from the Excel 2010

object model, however, the code will not compile in legacy versions. To work around this, comment out the 2010-specific

lines of code, compile, and then comment the lines back in.

If your only Excel 2010 issue is the use of constant values, partially treat your code as if you were doing late binding to

an external application. If you have only constant values that are incompatible, treat them like late binding arguments,

assigning a variable the numeric value of the constant. The following section shows an example of this.

See “Using Constant Values” p. 439, for more information on using constant values.

Version

The Version property returns a string containing the active Excel application version. For

2010, this is 14. This can prove useful if you’ve developed an add-in to use across versions;

but some parts of it, such as saving the active workbook, are version-specific:

Sub wkbkSave()
Dim xlVersion As String
Dim myxlOpenXMLWorkbook As String

Figure 7.3
Some items appear as
Hidden in the Object
Model Changes reference
tables. This means Excel
will compile them for use
in legacy versions, but
they won’t actually work
in Excel 2010.

145Compatibility Mode

myxlOpenXMLWorkbook = “51” ‘non-macro enabled workbook

xlVersion = Application.Version

Select Case xlVersion
 Case Is = “9.0”, “10.0”, “11.0”
 ActiveWorkbook.SaveAs Filename:=”LegacyVersionExcel.xls”
 Case Is = “12.0”, “14.0” ‘12.0 is Excel 2007
 ActiveWorkbook.SaveAs Filename:=”Excel2010Version”, _
 FileFormat:=myxlOpenXMLWorkbook
End Select
End Sub

Note that for the FileFormat property of the Excel 2010 case, I had to create my own variable,

myxlOpenXMLWorkbook, to hold the constant value of xlOpenXMLWorkbook. If I were to try to

run this in a legacy version of Excel just using the Excel 2010 constant, xlOpenXMLWorkbook, the

code would not even compile.

C A U T I O N

Excel8CompatibilityMode

This property returns a Boolean, to let you know whether a workbook is in Compatibility

mode—that is, saved as an Excel 97-2003 file. You use this, for example, if you have

an add-in using the new conditional formatting, but you wouldn’t want the user to try

and use it on the workbook. The following function, CompatibilityCheck, returns True

if the active workbook is in Compatibility mode and False if it is not. The procedure,

CheckCompatibility, uses the result to inform the user of an incompatible feature, as shown

in Figure 7.4:

Function CompatibilityCheck() As Boolean
Dim blMode As Boolean

If Application.Version = “12.0” or Application.Version = “14.0” Then
 blMode = ActiveWorkbook.Excel8CompatibilityMode
 If blMode = True Then
 CompatibilityCheck = True
 ElseIf blMode = False Then
 CompatibilityCheck = False
 End If
End If
End Function

Sub CheckCompatibility()
Dim xlCompatible As Boolean

xlCompatible = CompatibilityCheck

If xlCompatible = True Then
 MsgBox “You are attempting to use an Excel 2010 function “ & Chr(10) & _
 “in a 97-2003 Compatibility Mode workbook”
End If
End Sub

Chapter 7 What Is New in Excel 2010 and What Has Changed146

Figure 7.4
Use Excel8-
Compatibility-
Check to inform a user
that certain features in
your add-in won’t work
in a 97–2003 Excel file
opened in Excel 20010.

Excel Names
You have probably named ranges in a worksheet

by highlighting a range and typing a name in the

Name box to the left of the formula field. You also

might have created more complicated names con-

taining formulas. For example, perhaps you created

a name with a formula that finds the last row in a

column. The ability to set a name to a range makes

it much easier to write formulas and set tables.

The ability to create and manipulate names is also

available in VBA and provides the same benefits as

naming ranges in a worksheet. For example, you

can store a new range in a name.

This chapter explains different types of names and

the various ways you can use them.

Global Versus Local Names
Names can be global, which means they are available

anywhere in the workbook. Names can also be local,
which means they are available only on a specific

worksheet. With local names, you can have multiple

references in the workbook with the same name.

Global names must be unique to the workbook.

In previous versions of Excel, it was difficult to tell

whether you were looking at a global or local name.

In fact, you had to be on the correct sheet and com-

pare the list of names on different sheets. Beginning

with Excel 2007, you have the Name Manager

dialog box, which lists all the names in a workbook,

even a name that has been assigned to both the

global and local levels. The Scope column lists the

scope of the name, whether it is the workbook or a

specific sheet such as Sheet1.

Create and Manipulate
Names in VBA

8

Chapter 8 Create and Manipulate Names in VBA148

For example, in Figure 8.1 the name Apples is assigned to Sheet1, but also to the work-

book.

Figure 8.1
The Name Manager
lists all local and global
names.

Adding Names
If you record the creation of a named range and then view the code, you see something like

this:

ActiveWorkbook.Names.Add Name:=”Fruits”, RefersToR1C1:=”=Sheet2!R1C1:R6C6”

This creates a global name “Fruits”, which includes the range A1:F6 (R1C1:R6C6). The for-

mula is enclosed in quotes, and the equal sign in the formula must be included. In addition,

the range reference must be absolute (include the $ sign) or in R1C1 notation. If the sheet

on which the name is created is the active sheet, the sheet reference does not have to be

included. However, it can make the code easier to understand.

If the reference is not absolute, the name might be created, but it will not point to the correct range. For

example, if you run this line of code the name is created in the workbook. However, as you can see in

Figure 8.2, it hasn’t actually been assigned to the range.

ActiveWorkbook.Names.Add Name:=”Citrus”, _
 RefersToR1C1:=”=Sheet1!R1C1”

N
O

T
E

Figure 8.2
Cell A1 doesn’t have the
name Citrus assigned to
it because the name for-
mula lacks absolute refer-
encing and is not properly
recognized by Excel.

149Deleting Names

To create a local name, include the sheet name:

ActiveWorkbook.Names.Add Name:=”Sheet2!Fruits”, _
 RefersToR1C1:=”=Sheet2!R1C1:R6C6”

Alternatively, specify that the Names collection belongs to a worksheet:

Worksheets(“Sheet1”).Names.Add Name:=”Fruits”, _
 RefersToR1C1:=”=Sheet1!R1C1:R6C6”

The preceding example is what you would learn from the macro recorder. There is a sim-

pler way:

Range(“A1:F6”).Name = “Fruits”

Alternatively, for a local variable only, you can use this:

Range(“A1:F6”).Name = “Sheet1!Fruits”

When creating names with this method, absolute referencing is not required.

Table names were a new feature in Excel 2007. You can use them like defined names, but you don’t

create them the same way. See the “Tables” section, later in this chapter, for more information about

creating table names.

N
O

T
E

Although this is much easier and quicker than what the macro recorder creates, it is limited

in that it works only for ranges. Formulas, strings, numbers, and arrays require the use of

the Add method.

The Name property of the name ObjectName is an object but still has a Name property. The

following line renames an existing name:

Names(“Fruits”).Name = “Produce”

Fruits no longer exists; Produce is now the name of the range.

When you are renaming names in which a local and global reference both carry the same

name, the previous line renames the local reference first.

Deleting Names
Use the Delete method to delete a name:

Names(“ProduceNum”).Delete

An error occurs if you attempt to delete a name that does not exist.

Chapter 8 Create and Manipulate Names in VBA150

Adding Comments
Beginning with Excel 2007, you can add comments about names. You can add any addi-

tional information such as why the name was created or where it is used. To insert a com-

ment for the local name LocalOffice, do this:

ActiveWorkbook.Worksheets(“Sheet7”).Names(“LocalOffice”).Comment = _
“Holds the name of the current office”

The comments will appear in a column in the Name Manager, as shown in Figure 8.3.

If both local and global references with the same name exist, be more specific as to which name is

being deleted.

C A U T I O N

The name must exist before a comment can be added to it.

C A U T I O N

Figure 8.3
You can add comments
about names to help
remember their purpose.

Types of Names
The most common use of names is for storing ranges; however, names can store more than

just ranges. After all, that’s what they’re for: Names store information. Names make it sim-

ple to remember and use potentially complex or large amounts of information. In addition,

unlike variables, names remember what they store beyond the life of the program.

You have covered creating range names, but you can also assign names to name formulas,

strings, numbers, and arrays.

151Types of Names

Formulas
The syntax for storing a formula in a name is the same as for a range because the range is

essentially a formula:

Names.Add Name:=”ProductList”, _
 RefersTo:=”=OFFSET(Sheet2!A2,0,0,COUNTA(Sheet2!$A:$A))”

The preceding code allows for a dynamic named column, which is useful for creating

dynamic tables or for referencing any dynamic listing on which calculations may be per-

formed, as shown in Figure 8.4.

Figure 8.4
Dynamic formulas can be
assigned to names.

Strings
When using names to hold strings such as the name of the current fruit producer, enclose

the string value in quotes. Because there is no formula involved, an equal sign is not

needed. If you were to include an equal sign, Excel would treat the value as a formula. Let

Excel include the equal sign shown in the Name Manager.

Names.Add Name: = “Company”, RefersTo:=”CompanyA”

Figure 8.5 shows how the coded name will appear in the Name Manager window.

Figure 8.5
A string value can be
assigned to a name.

Chapter 8 Create and Manipulate Names in VBA152

Using Names to Store Values

Because names do not lose their references between sessions, this is a great way to store values as opposed to stor-

ing values in cells from which the information would have to be retrieved. For example, to track the leading producer

between seasons, create a name Leader. If the new season’s leading producer matches the name reference, a special

report comparing the seasons could be created. The other option is to create a special sheet to track the values between

sessions and then retrieve the values when needed. With names, the values are readily available.

The following procedure shows how cells in a variable sheet are used to retain information

between sessions:

Sub NoNames(ByRef CurrentTop As String)
TopSeller = Worksheets(“Variables”).Range(“A1”).Value
If CurrentTop = TopSeller Then
 MsgBox (“Top Producer is “ & TopSeller & “ again.”)
Else
 MsgBox (“New Top Producer is “ & CurrentTop)
End If
End Sub

The following procedure shows how names are used to store information between sessions:

Sub WithNames()
If Evaluate(“Current”) = Evaluate(“Previous”) Then
 MsgBox (“Top Producer is “ & Evaluate(“Previous”) & “ again.”)
Else
 MsgBox (“New Top Producer is “ & Evaluate(“Current”))
End If
End Sub

If Current and Previous are previously declared names, you access them directly rather than

create variables in which to pass them. Note the use of the Evaluate method to extract the

values in names. The string being stored cannot have more than 255 characters.

Numbers
You can also use names to store numbers between sessions. Use this:

NumofSales = 5123
Names.Add Name:=”TotalSales”, RefersTo:=NumofSales

Alternatively, you can use this:

Names.Add Name:=”TotalSales”, RefersTo:=5123

Notice the lack of quotes or an equal sign. Using quotes changes the number to a string.

With the addition of an equal sign, the number changes to a formula.

To retrieve the value in the name, you have a longer and a shorter option:

NumofSales = Names(“TotalSales”).Value

or

NumofSales = [TotalSales]

153Types of Names

Tables
Excel tables share some of the properties of defined names, but they also have their own

unique methods. Unlike defined names, which are what you are used to dealing with, tables

cannot be created manually. In other words, you cannot select a range on a sheet and type a

name in the Name field. However, you can manually create them via VBA.

Tables are not created using the same method as the defined names. Instead of Range(xx).

Add or Names.Add, use ListObjects.Add.

To create a table from cells A1:F6, and assuming the table has column headers, as shown in

Figure 8.6, do this:

ActiveSheet.ListObjects.Add(xlSrcRange, Range(“A1:F6”), , xlYes).Name = _
“Table1”

Keep in mind that someone reading your code might not be familiar with the use of the Evaluate

method (square brackets). If you know that someone else will be reading your code, avoid the use of

the Evaluate method or add a comment explaining it.
T

IP

Figure 8.6
You can assign a special
name to a data table.

xlSrcRange (the SourceType) tells Excel the source of the data is an Excel range. You then

need to specify the range (the source) of the table. If you have headers in the table, include

that row when indicating the range. The next argument, which is not used in the preceding

example, is the LinkSource, a Boolean indicating whether there is an external data source

and is not used if the SourceType is xlSrcRange. xlYes lets Excel know the data table has

column headers; otherwise, Excel automatically generates them. The final argument, which

is not shown in the preceding example, is the destination. This is used when the SourceType

is xlSrcExternal, indicating the upper-left cell where the table will begin.

Using Arrays in Names
A name can also store the data stored in an array. The array size is limited by available

memory. See Chapter 19, “Arrays,” for more information about arrays.

An array reference is stored in a name the same way as a numeric reference:

Sub NamedArray()
Dim myArray(10, 5)
Dim i As Integer, j As Integer
‘The following For loops fill the array myArray

Chapter 8 Create and Manipulate Names in VBA154

For i = 1 To 10
 For j = 1 To 5
 myArray(i, j) = i + j
 Next j
Next i
‘The following line takes our array and gives it a name
Names.Add Name:=”FirstArray”, RefersTo:=myArray
End Sub

Because the name is referencing a variable, no quotes or equal signs are required.

Reserved Names
Excel uses local names of its own to keep track of information. These local names are con-

sidered reserved, and if you use them for your own references, they might cause problems.

Highlight an area on a sheet. Then from the Page Layout tab, select Print Area, Set Print

Area.

As shown in Figure 8.7, a Print_Area listing is in the Range Name field. Deselect the area

and look again in the Range Name field. The name is still there. Select it, and the print

area previously set is now highlighted. If you save, close, and reopen the workbook, Print_

Area is still set to the same range. Print_Area is a name reserved by Excel for its own use.

Figure 8.7
Excel creates its own
names.

Each sheet has its own print area. In addition, setting a new print area on a sheet with an existing

print area overwrites the original print area name.

C A U T I O N

Fortunately, Excel does not have a large list of reserved names:

Criteria

Database

Extract

Print_Area

Print_Titles

155Checking for the Existence of a Name

Criteria and Extract are used when the Advanced Filter (on the Data tab, select Advanced

Filter) is configured to extract the results of the filter to a new location.

Database is no longer required in Excel. However, some features, such as Data Form, still

recognize it. Legacy versions of Excel used it to identify the data you wanted to manipulate

in certain functions.

Print_Area is used when a print area is set (from the Page Layout tab, select Print Area,

Set Print Area) or when Page Setup options that designate the print area (from the Page

Layout tab, Scale) are changed.

Print_Titles is used when print titles are set (Page Layout, Print Titles).

These names should be avoided and variations used with caution. For example, if you create

a name PrintTitles, you might accidentally code this:

Worksheets(“Sheet4”).Names(“Print_Titles”).Delete

You have just deleted the Excel name rather than your custom name.

Hiding Names
Names are incredibly useful, but you don’t necessarily want to see all the names you have

created. Like many other objects, names have a Visible property. To hide a name, set the

Visible property to False. To unhide a name, set the Visible property to True:

Names.Add Name:=”ProduceNum”, RefersTo:=”=A1”, Visible:=False

If a user creates a Name object with the same name as your hidden one, the hidden name is overwrit-

ten without any warning message. To prevent this, protect the worksheet.

C A U T I O N

Checking for the Existence of a Name
You can use the following function to check for the existence of a user-defined name, even

a hidden one. Keep in mind that this function does not return the existence of Excel’s

reserved names. Even so, this is a handy addition to your arsenal of “programmer’s useful

code”:

Function NameExists(FindName As String) As Boolean
Dim Rng As Range
Dim myName As String
On Error Resume Next
myName = ActiveWorkbook.Names(FindName).Name
If Err.Number = 0 Then
 NameExists = True
Else
 NameExists = False
End If
End Function

Chapter 8 Create and Manipulate Names in VBA156

The preceding code is also an example of how to use errors to your advantage. If the name

for which you are searching does not exist, an error message is generated. By adding the

On Error Resume Next line at the beginning, you force the code to continue. Then you use

Err.Number to tell you whether it ran into an error. If you didn’t, Err.Number is zero, which

means the name exists. Otherwise, you had an error and the name does not exist.

Every day, you import a file of sales data from a chain of retail stores. The file includes the store number but not the store

name. You obviously don’t want to have to type store names every day, but you would like to have store names appear on

all the reports that you run.

Normally, you would enter a table of store numbers and names in an out-of-the way spot on a back worksheet. You can

use VBA to help maintain the list of stores each day and then use the VLOOKUP function to get store names from the list

into your data set.

The basic steps are as follows:

 1. Import the data file.

 2. Find all the unique store numbers in today’s file.

 3. See whether any of these store numbers are not in your current table of store names.

 4. For any stores that are new, add them to the table and ask the user for a store name.

 5. The Store Names table is now larger, so reassign the named range used to describe the store table.

 6. Use a VLOOKUP function in the original dataset to add a store name to all records. This VLOOKUP references the

named range of the newly expanded Store Names table.

The following code handles these six steps:

Sub ImportData()
‘ This routine imports sales.csv to the data sheet
‘ Check to see whether any stores in column A are new
‘ If any are new, then add them to the StoreList table

Dim WSD As Worksheet
Dim WSM As Worksheet
Dim WB As Workbook

Set WB = ThisWorkbook
‘ Data is stored on the Data worksheet
Set WSD = WB.Worksheets(“Data”)
‘ StoreList is stored on a menu worksheet
Set WSM = WB.Worksheets(“Menu”)

‘ Open the file..This makes the csv file active
Workbooks.Open Filename:=”C:\Sales.csv”
‘ Copy the data to WSD and close
ActiveWorkbook.Range(“A1”).CurrentRegion.Copy Destination:=WSD.Range(“A1”)
ActiveWorkbook.Close SaveChanges:=False

C A S E S T U D Y : U S I N G N A M E D R A N G E S F O R V L O O K U P

157Checking for the Existence of a Name

‘ Find a list of unique stores from column A
FinalRow = WSD.Cells(WSD.Rows.Count, 1).End(xlUp).Row
WSD.Range(“A1”).Resize(FinalRow, 1).AdvancedFilter Action:=xlFilterCopy, _
 CopyToRange:=WSD.Range(“Z1”), Unique:=True

‘ For all the unique stores, see whether they are in the
‘ current store list.
FinalStore = WSD.Range(“Z” & WSD.Rows.Count).End(xlUp).Row
WSD.Range(“AA1”).Value = “There?”
WSD.Range(“AA2:AA” & FinalStore).FormulaR1C1 = _
 “=ISNA(VLOOKUP(RC[-1],StoreList,1,False))”

‘ Find the next row for a new store. Because StoreList starts in A1
‘ of the Menu sheet, find the next available row
NextRow = WSM.Range(“A” & WSM.Rows.Count).End(xlUp).Row + 1

‘ Loop through the list of today ‘s stores.If they are shown
‘ as missing, then add them at the bottom of the StoreList
For i = 2 To FinalStore
 If WSD.Cells(i, 27).Value = True Then
 ThisStore = Cells(i, 26).Value
 WSM.Cells(NextRow, 1).Value = ThisStore
 WSM.Cells(NextRow, 2).Value = _
 InputBox(Prompt:=”What is name of store “ _
 & ThisStore, Title:=”New Store Found”)
 NextRow = NextRow + 1
 End If
Next i

‘ Delete the temporary list of stores in Z &AA
WSD.Range(“Z1:AA” & FinalStore).Clear

‘ In case any stores were added, re-define StoreList name
FinalStore = WSM.Range(“A” & WSM.Rows.Count).End(xlUp).Row
WSM.Range(“A1:B” & FinalStore).Name = “StoreList”

‘ Use VLOOKUP to add StoreName to column B of the dataset
WSD.Range(“B1”).EntireColumn.Insert
WSD.Range(“B1”).Value = “StoreName”
WSD.Range(“B2:B” & FinalRow).FormulaR1C1 = “=VLOOKUP(RC1,StoreList,2,False)”

‘ Change Formulas to Values
WSD.Range(“B2:B” & FinalRow).Value = Range(“B2:B” & FinalRow).Value

‘Release our variables to free system memory
Set WB = Nothing
Set WSD = Nothing
Set WSM = Nothing
End Sub

Levels of Events
Earlier in the book, you read about workbook

events and you have seen examples of worksheet

events. Events are Excel’s way of letting you execute

code based on certain actions that take place in a

workbook.

These events can be found at the following levels:

 ■ Application level—Control based on applica-

tion actions such as Application_NewWorkbook

 ■ Workbook level—Control based on workbook

actions such as Workbook_Open

 ■ Worksheet level—Control based on

worksheet actions such as Worksheet_

SelectionChange

 ■ Chart sheet level—Control based on chart

actions such as Chart_Activate

Listed here are where different types of events

should be placed:

 ■ Workbook events go into the ThisWorkbook

module.

 ■ Worksheet events go into the module of the

sheet they affect such as Sheet1.

 ■ Chart sheet events go into the module of the

chart sheet they affect such as Chart1.

 ■ Embedded charts and application events go

into class modules.

The events can still make procedure or function

calls outside their own modules. Therefore, if you

want the same action to take place for two different

sheets, you don’t have to copy the code. Instead,

place the code in a module and have each sheet

event call the procedure.

Event Programming

9

Chapter 9 Event Programming160

In this chapter, you learn about different levels of events, where to find them, and how to

use the events.

Userform and control events are discussed in Chapter 10, “Userforms: An Introduction,” and Chapter 23,

“Advanced Userform Techniques.”N
O

T
E

Using Events
Each level consists of several types of events, and memorizing the syntax of them all would

be a feat. Excel makes it easy to view and insert the available events in their proper modules

right from the VB Editor.

When a ThisWorkbook, Sheet, Chart Sheet, or Class module is active, the corresponding

events are available through the Object and Procedure drop-downs, as shown in Figure 9.1.

Procedure Drop-DownObject Drop-Down

Figure 9.1
The different events are
easy to access from the
VB Editor Object and
Procedure drop-downs.

After the object is selected, the Procedure drop-down updates to list the events available for

that object. Selecting a procedure automatically places the procedure header (Private Sub)

and footer (End Sub) in the editor, as shown in Figure 9.2.

Figure 9.2
The procedure header and
footer are automatically
placed.

Event Parameters
Some events have parameters, such as Target or Cancel, that allow values to be passed into

the procedure. For example, some procedures are triggered before the actual event, such as

BeforeRightClick. Assigning True to the Cancel parameter prevents the default action from

taking place. In this case, the shortcut menu is prevented from appearing:

Private Sub Worksheet_BeforeRightClick(ByVal Target As Range, Cancel As _
Boolean)
Cancel = True
End Sub

161Workbook Events

Enabling Events
Some events can trigger other events including themselves. For example, the Worksheet_

Change event is triggered by a change in a cell. If the event is triggered and the procedure

itself changes a cell, the event gets triggered again, which changes a cell, triggering another

the event, and so on. The procedure gets stuck in an endless loop.

To prevent this, disable the events and then reenable them at the end of the procedure:

Private Sub Worksheet_Change(ByVal Target As Range)
Application.EnableEvents = False
Range(“A1”).Value = Target.Value
Application.EnableEvents = True
End Sub

To interrupt a macro, press Esc or Ctrl+Break. To restart it, use Run on the toolbar or press F5.

T
IP

Workbook Events
The following event procedures are available at the workbook level. Some events, such as

Workbook_SheetActivate, are sheet events available at the workbook level. This means you

don’t have to copy and paste the code in each sheet in which you want it to run.

Workbook_Activate()

Workbook_Activate occurs when the workbook containing this event becomes the active

workbook.

Workbook_Deactivate()

Workbook_Deactivate occurs when the active workbook is switched from the workbook con-

taining the event to another workbook.

Workbook_Open()

Workbook_Open is the default workbook event. This procedure is activated when a workbook

is opened; no user interface is required. The procedure has a variety of uses, such as check-

ing the username and then customizing the user’s privileges in the workbook.

The following code checks the UserName. If it is not Admin, this code protects each sheet

from user changes.

UserInterfaceOnly allows macros to make changes, but not the user.

T
IP

Chapter 9 Event Programming162

Private Sub Workbook_Open()
Dim sht As Worksheet
If Application.UserName <> “Admin” Then
 For Each sht In Worksheets
 sht.Protect UserInterfaceOnly:=True
 Next sht
End If
End Sub

You can also use Workbook_Open to create custom menus or toolbars. The following code

adds the menu MrExcel Programs to the Add-ins tab with two options underneath it (see

Figure 9.3).

For more information about custom menus, see Chapter 26, “Customizing the Ribbon to Run Macros.”

Sub Workbook_Open()

Figure 9.3
You can use the Open
event to create custom
menus under the Add-
ins tab.

Dim cbWSMenuBar As CommandBar
Dim Ctrl As CommandBarControl, muCustom As CommandBarControl
Set cbWSMenuBar = Application.CommandBars(“Worksheet menu bar”)
Set muCustom = cbWSMenuBar.Controls.Add(Type:=msoControlPopup, _
 Temporary:=True)
For Each Ctrl In cbWSMenuBar.Controls
 If Ctrl.Caption = “&MrExcel Programs” Then
 cbWSMenuBar.Controls(“MrExcel Programs”).Delete
 End If
Next Ctrl
With muCustom
 .Caption = “&MrExcel Programs”
 With .Controls.Add(Type:=msoControlButton)
 .Caption = “&Import and Format”
 .OnAction = “ImportFormat”
 End With
 With .Controls.Add(Type:=msoControlButton)
 .Caption = “&Calculate Year End”
 .OnAction = “CalcYearEnd”
 End With
End With
End Sub

Workbook_BeforeSave(ByVal SaveAsUI As Boolean, Cancel As Boolean)

Workbook_BeforeSave occurs when the workbook is saved. SaveAsUI is set to True if the

Save As dialog box is to be displayed. Cancel set to True prevents the workbook from being

saved.

163Workbook Events

Workbook_BeforePrint(Cancel As Boolean)

Workbook_BeforePrint occurs when any print command is used, whether it is in the ribbon,

keyboard, or macro. Cancel set to True prevents the workbook from being printed.

The following code tracks each time a sheet is printed. It logs the date, time, username, and

the sheet printed in a hidden print log (see Figure 9.4):

Private Sub Workbook_BeforePrint(Cancel As Boolean)
Dim LastRow As Long
Dim PrintLog As Worksheet
Set PrintLog = Worksheets(“PrintLog”)
LastRow = PrintLog.Cells(PrintLog.Rows.Count, 1).End(xlUp).Row + 1
With PrintLog
 .Cells(LastRow, 1).Value = Now()
 .Cells(LastRow, 2).Value = Application.UserName
 .Cells(LastRow, 3).Value = ActiveSheet.Name
End With
End Sub

Figure 9.4
Use the BeforePrint
event to keep a hidden
print log in a workbook.

You also can use the BeforePrint event to add information to a header or footer before the

sheet is printed. Although you can enter the file path into a header or footer through the

Page Setup, before Office XP the only way to add the file path was with code. In legacy

versions of Office, the following code was commonly used:

Private Sub Workbook_BeforePrint(Cancel As Boolean)
 ActiveSheet.PageSetup.RightFooter = ActiveWorkbook.FullName
End Sub

Workbook_BeforeClose(Cancel As Boolean)

Workbook_BeforeClose occurs when a workbook is closed. Cancel set to True prevents the

workbook from closing.

If the Open event is used to create a custom menu, the BeforeClose event is used to delete it:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
Dim cbWSMenuBar As CommandBar
On Error Resume Next
Set cbWSMenuBar = Application.CommandBars(“Worksheet menu bar”)
cbWSMenuBar.Controls(“MrExcel Programs”).Delete
End Sub

This is a nice little procedure, but there is one problem: If changes are made to the work-

book and it isn’t saved, Excel displays the Do You Want to Save? dialog box after the

BeforeClose event has run. This means that if the user decides to cancel, the menu is now

gone.

Chapter 9 Event Programming164

The solution is to create your own Save dialog in the event:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
Dim Msg As String
Dim Response
Dim cbWSMenuBar As CommandBar
If Not ThisWorkbook.Saved Then
 Msg = “Do you want to save the changes you made to “ & Me.Name & “?”
 Response = MsgBox(Msg, vbQuestion + vbYesNoCancel)
 Select Case Response
 Case vbYes
 ThisWorkbook.Save
 Case vbNo
 ThisWorkbook.Saved = True
 Case vbCancel
 Cancel = True
 Exit Sub
 End Select
End If
On Error Resume Next
Set cbWSMenuBar = Application.CommandBars(“Worksheet menu bar”)
cbWSMenuBar.Controls(“MrExcel Programs”).Delete
End Sub

Workbook_NewSheet(ByVal Sh As Object)

Workbook_NewSheet occurs when a new sheet is added to the active workbook. Sh is the new

Worksheet or Chart Sheet object.

Workbook_WindowResize(ByVal Wn As Window)

Workbook_WindowResize occurs when the active workbook is resized. Wn is the window.

Only resizing the active workbook window starts this event. Resizing the application window is an

application-level event that is not affected by the workbook-level event.N
O

T
E

This code disables the resizing of the active workbook:

Private Sub Workbook_WindowResize(ByVal Wn As Window)
Wn.EnableResize = False
End Sub

If you disable the capability to resize, the minimize and maximize buttons are removed, and the

workbook cannot be resized. To undo this, type ActiveWindow.EnableResize = True in the

Immediate window.

C A U T I O N

165Workbook Events

Workbook_WindowActivate(ByVal Wn As Window)

Workbook_WindowActivate occurs when any workbook window is activated. Wn is the win-

dow. Only activating the workbook window starts this event.

Workbook_WindowDeactivate(ByVal Wn As Window)

Workbook_WindowDeactivate occurs when any workbook window is deactivated. Wn is the

window. Only deactivating the workbook window starts this event.

Workbook_AddInInstall()

Workbook_AddInInstall occurs when the workbook is installed as an add-in (by selecting the

Microsoft Office button, Excel Options, Add-ins). Double-clicking an XLAM file (an add-

in) to open it does not activate the event.

Workbook_AddInUninstall

Workbook_AddInUninstall occurs when the workbook (add-in) is uninstalled. The add-in is

not automatically closed.

Workbook_Sync(ByVal SyncEventType As Office.MsoSyncEventType)

Workbook_Sync occurs when the local copy of a sheet in a workbook that is part of a

Document Workspace is synchronized with the copy on the server. SyncEventType is the

status of the synchronization.

Workbook_PivotTableCloseConnection(ByVal Target As PivotTable)

Workbook_PivotTableCloseConnection occurs when a pivot table report closes its connection

to its data source. Target is the pivot table that has closed the connection.

Workbook_PivotTableOpenConnection(ByVal Target As PivotTable)

Workbook_PivotTableOpenConnection occurs when a pivot table report opens a connection

to its data source. Target is pivot table that has opened the connection.

Workbook_RowsetComplete(ByVal Description As String, ByVal Sheet
As String, ByVal Success As Boolean)

Workbook_RowsetComplete occurs when the user drills through a recordset or calls upon the

rowset action on an OLAP PivotTable. Description is a description of the event; Sheet is

the name of the sheet on which the recordset is created; Success indicates success or failure.

Chapter 9 Event Programming166

Workbook_BeforeXmlExport(ByVal Map As XmlMap, ByVal Url As
String, Cancel As Boolean)

Workbook_BeforeXmlExport occurs when XML data is exported or saved. Map is the map

used to export or save the data; Url is the location of the XML file; Cancel set to True can-

cels the export operation.

Workbook_AfterXmlExport(ByVal Map As XmlMap, ByVal Url As String,
ByVal Result As XlXmlExportResult)

Workbook_AfterXmlExport occurs after XML data is exported or saved. Map is the map used

to export or save the data; Url is the location of the XML file; Result indicates success or

failure.

Workbook_BeforeXmlImport(ByVal Map As XmlMap, ByVal Url As
String, ByVal IsRefresh As Boolean, Cancel As Boolean)

Workbook_BeforeXmlImport occurs when XML data is imported or refreshed. Map is the map

used to import the data; Url is the location of the XML file; IsRefresh returns True if the

event was triggered by refreshing an existing connection and False if triggered by import-

ing from a new data source; Cancel set to True cancels the import or refresh operation.

Workbook_AfterXmlImport(ByVal Map As XmlMap, ByVal IsRefresh As
Boolean, ByVal Result As XlXmlImportResult)

Workbook_AfterXmlImport occurs when XML data is exported or saved. Map is the map used

to export or save the data; IsRefresh returns True if the event was triggered by refreshing

an existing connection and False if triggered by importing from a new data source; Result

indicates success or failure.

Workbook Level Sheet and Chart Events
The following are sheet and chart events available at the workbook level. These events

affect all sheets in the workbook. Unless otherwise indicated, to affect a specific sheet,

replace the text Workbook_Sheet with Worksheet_ or Chart_ to access the sheet or chart level

event. For example, if the event is Workbook_SheetSelectionChange, the sheet level event is

Worksheet_SelectChange. This does not apply to pivot table events.

Workbook_SheetActivate(ByVal Sh As Object)

Workbook_SheetActivate occurs when any chart sheet or worksheet in the workbook is acti-

vated. Sh is the active sheet.

167Workbook Events

Workbook_SheetBeforeDoubleClick (ByVal Sh As Object, ByVal Target As Range, Cancel As

Boolean)

Workbook_SheetBeforeDoubleClick occurs when the user double-clicks any chart sheet or

worksheet in the active workbook. Sh is the active sheet; Target is the object double-clicked;

Cancel set to True prevents the default action from taking place.

Workbook_SheetBeforeRightClick(ByVal Sh As Object, ByVal Target As Range, Cancel As

Boolean)

Workbook_SheetBeforeRightClick occurs when the user right-clicks any worksheet in the

active workbook. Sh is the active worksheet; Target is the object right-clicked; Cancel set to

True prevents the default action from taking place.

Workbook_SheetCalculate(ByVal Sh As Object)

Workbook_SheetCalculate occurs when any worksheet is recalculated or any updated data is

plotted on a chart. Sh is the active sheet.

Workbook_SheetChange (ByVal Sh As Object, ByVal Target As Range)

Workbook_SheetChange occurs when any range in a worksheet is changed. Sh is the work-

sheet; Target is the changed range.

There is no Chart version of this event.

Workbook_SheetDeactivate (ByVal Sh As Object)

Workbook_SheetDeactivate occurs when any chart sheet or worksheet in the workbook is

deactivated. Sh is the sheet being switched from.

Workbook_SheetFollowHyperlink (ByVal Sh As Object, ByVal Target As Hyperlink)

Workbook_SheetFollowHyperlink occurs when any hyperlink is clicked in Excel. Sh is the

active worksheet; Target is the hyperlink.

There is no Chart version of this event.

Workbook_SheetSelectionChange(ByVal Sh As Object, ByVal Target As Range)

Workbook_SheetSelectionChange occurs when a new range is selected on any sheet. Sh is the

active sheet; Target is the affected range.

There is no Chart version of this event.

Workbook_SheetPivotTableUpdate(ByVal Sh As Object, ByVal Target As PivotTable)

Workbook_SheetPivotTableUpdate occurs when a pivot table is updated. Sh is the active

sheet; Target is the updated pivot table.

Chapter 9 Event Programming168

Worksheet Events
The following event procedures are available at the worksheet level.

Worksheet_Activate()

Worksheet_Activate occurs when the sheet on which the event is located becomes the active

sheet.

Worksheet_Deactivate()

Worksheet_Deactivate occurs when another sheet becomes the active sheet.

If a Deactivate event is on the active sheet and you switch to a sheet with an Activate event,

the Deactivate event runs first, followed by the Activate event.N
O

T
E

Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As
Boolean)

Worksheet_BeforeDoubleClick allows control over what happens when the user double-

clicks the sheet. Target is the selected range on the sheet; Cancel is set to False by default,

but if set to True, it prevents the default action, such as entering a cell, from happening.

The following code prevents the user from entering a cell with a double-click. In addition,

if the formula field is hidden, this code does not allow the user to enter information in the

traditional way:

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, _
 Cancel As Boolean)
Cancel = True
End Sub

The preceding code does not prevent the user from double-clicking to size a row or column.

N
O

T
E

Preventing the double-click from entering a cell allows it to be used for something else

such as highlighting a cell. The following code changes a cell’s interior color to red when it

is double-clicked:

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, _
 Cancel As Boolean)
Dim myColor As Integer
Target.Interior.ColorIndex = 3
End Sub

169Worksheet Events

Worksheet_BeforeRightClick(ByVal Target As Range, Cancel As
Boolean)

Worksheet_BeforeRightClick is triggered when the user right-clicks a range. Target is the

object right-clicked; Cancel set to True prevents the default action from taking place.

Worksheet_Calculate()

Worksheet_Calculate occurs after a sheet is recalculated.

The following example compares a month’s profits between the previous and current year.

If profit has fallen, a red down arrow appears below the month; if profit has risen, a green

up arrow appears (see Figure 9.5):

Private Sub Worksheet_Calculate()
Select Case Range(“C3”).Value
 Case Is < Range(“C4”).Value
 SetArrow 10, msoShapeDownArrow
 Case Is > Range(“C4”).Value
 SetArrow 3, msoShapeUpArrow
End Select
End Sub

Private Sub SetArrow(ByVal ArrowColor As Integer, ByVal ArrowDegree)
‘ The following code is added to remove the prior shapes
For Each sh In ActiveSheet.Shapes
 If sh.Name Like “*Arrow*” Then
 sh.Delete
 End If
Next sh
ActiveSheet.Shapes.AddShape(ArrowDegree, 22, 40, 5, 10).Select
With Selection.ShapeRange
 With .Fill
 .Visible = msoTrue
 .Solid
 .ForeColor.SchemeColor = ArrowColor
 .Transparency = 0#
 End With
 With .Line
 .Weight = 0.75
 .DashStyle = msoLineSolid
 .Style = msoLineSingle
 .Transparency = 0#
 .Visible = msoTrue
 .ForeColor.SchemeColor = 64
 .BackColor.RGB = RGB(255, 255, 255)
 End With
End With
Range(“A3”).Select ‘Place the selection back on the dropdown
End Sub

Chapter 9 Event Programming170

Worksheet_Change(ByVal Target As Range)

Worksheet_Change is triggered by a change to a cell’s value such as when text is entered,

edited, or deleted. Target is the cell that has been changed.

Figure 9.5
Use the Calculate event
to add graphics that
emphasize the change in
profits.

The event can also be triggered by pasting values. Recalculation of a value does not trigger the event.

Therefore, the Calculation event should be used instead.N
O

T
E

Worksheet_SelectionChange(ByVal Target As Range)

Worksheet_SelectionChange occurs when a new range is selected. Target is the newly

selected range.

The following example helps identify a single selected cell by highlighting the row and col-

umn:

This example makes use of conditional formatting and overwrites any existing conditional formatting

on the sheet. The code may also clear the clipboard, which makes it difficult to copy and paste on the

sheet.

C A U T I O N

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
Dim iColor As Integer
On Error Resume Next
iColor = Target.Interior.ColorIndex
If iColor < 0 Then
 iColor = 36
Else

171Worksheet Events

 iColor = iColor + 1
End If
If iColor = Target.Font.ColorIndex Then iColor = iColor + 1
Cells.FormatConditions.Delete
With Range(“A” & Target.Row, Target.Address)
 .FormatConditions.Add Type:=2, Formula1:=”TRUE”
 .FormatConditions(1).Interior.ColorIndex = iColor
End With
With Range(Target.Offset(1 - Target.Row, 0).Address & “:” & _
 Target.Offset(-1, 0).Address)
 .FormatConditions.Add Type:=2, Formula1:=”TRUE”
 .FormatConditions(1).Interior.ColorIndex = iColor
End With
End Sub

Worksheet_FollowHyperlink(ByVal Target As Hyperlink)

Worksheet_FollowHyperlink occurs when a hyperlink is clicked. Target is the hyperlink.

You’re entering arrival and departure times and want the times to be formatted with a 24-hour clock, which is also known

as military time. You have tried formatting the cell, but no matter how you enter the times, they are displayed in the 0:00

hours and minutes format.

The only way to get the time to appear as military time such as 23:45, is to have the time entered in the cell in this man-

ner. Because typing the colon is time-consuming, it would be more efficient to enter the numbers and let Excel format it

for you.

The solution is to use a Change event to take what is in the cell and insert the colon for you:

Private Sub Worksheet_Change(ByVal Target As Range)
Dim ThisColumn As Integer
Dim UserInput As String, NewInput As String
ThisColumn = Target.Column
If ThisColumn < 3 Then
 If Target.Count > 1 Then Exit Sub ‘check that only 1 cell is selected
 UserInput = Target.Value
 If UserInput > 1 Then
 NewInput = Left(UserInput, Len(UserInput) - 2) & “:” & _
 Right(UserInput, 2)
 Application.EnableEvents = False
 Target = NewInput
 Application.EnableEvents = True
 End If
End If
End Sub

An entry of 2345 will display as 23:45. Note that the code limits this format change to Columns A and B (If

ThisColumn < 3). Without this limitation, entering numbers anywhere on a sheet such as in a totals column would

force it to be reformatted.

C A S E S T U D Y : Q U I C K LY E N T E R I N G M I L I T A R Y T I M E I N T O A C E L L

Chapter 9 Event Programming172

Worksheet_PivotTableUpdate(ByVal Target As PivotTable)

Worksheet_PivotTableUpdate occurs when a pivot table is updated. Target is the updated

pivot table.

Chart Sheet Events
Chart events occur when a chart is changed or activated. Embedded charts require the

use of class modules to access the events. For more information about class modules, see

Chapter 22, “Creating Classes, Records, and Collections.”

Embedded Charts
Because embedded charts do not create chart sheets, the chart events are not as readily

available. However, you can make them available by adding a class module, as follows:

1. Insert a class module.

2. Rename the module to cl_ChartEvents.

3. Enter the following line of code in the class module:

Public WithEvents myChartClass As Chart

The chart events are now available to the chart, as shown in Figure 9.6. They are

accessed in the class module rather than on a chart sheet.

 4. Insert a standard module.

 5. Enter the following lines of code in a standard module:

Dim myClassModule As New cl_ChartEvents
Sub InitializeChart()
 Set myClassModule.myChartClass = _
 Worksheets(1).ChartObjects(1).Chart
End Sub

These lines initialize the embedded chart to be recognized as a Chart object. The proce-

dure must be run once per session.

Use Application.EnableEvents = False to prevent the procedure from calling itself when

the value in the target is updated.
T

IP

Workbook_Open can be used to automate this procedure.

T
IP

173Chart Sheet Events

Chart_Activate()

Chart_Activate occurs when a chart sheet is activated or changed.

Chart_BeforeDoubleClick(ByVal ElementID As Long, ByVal Arg1 As
Long, ByVal Arg2 As Long, Cancel As Boolean)

Chart_BeforeDoubleClick occurs when any part of a chart is double-clicked. ElementID is

the part of the chart that is double-clicked, such as the legend. Arg1 and Arg2 are dependent

upon the ElementID; Cancel set to True prevents the default double-click action from occur-

ring.

The following sample hides the legend when it is double-clicked, while double-clicking

either axis brings back the legend:

Private Sub MyChartClass_BeforeDoubleClick(ByVal ElementID As Long, _
 ByVal Arg1 As Long, ByVal Arg2 As Long, Cancel As Boolean)
Select Case ElementID
 Case xlLegend
 Me.HasLegend = False
 Cancel = True
 Case xlAxis
 Me.HasLegend = True
 Cancel = True
End Select
End Sub

Chart_BeforeRightClick(Cancel As Boolean)

Chart_BeforeRightClick occurs when a chart is right-clicked. Cancel set to True prevents

the default right-click action from occurring.

Chart_Calculate()

Chart_Calculate occurs when a chart’s data is changed.

Chart_Deactivate()

Chart_Deactivate occurs when another sheet becomes the active sheet.

Figure 9.6
Embedded chart events
are now available in the
class module.

Chapter 9 Event Programming174

Chart_MouseDown(ByVal Button As Long, ByVal Shift As Long, ByVal
x As Long, ByVal y As Long)

Chart_MouseDown occurs when the cursor is over the chart and any mouse button is pressed.

Button is the mouse button that was clicked; Shift is whether a Shift, Ctrl, or Alt key was

pressed; X is the X coordinate of the cursor when the button is pressed; Y is the Y coordi-

nate of the cursor when the button is pressed.

The following code zooms in on a left mouse click and zooms out on a right mouse click.

Use the Cancel argument in the BeforeRightClick event to handle the menus that appear

when you right-click a chart.

Private Sub MyChartClass_MouseDown(ByVal Button As Long, ByVal Shift _
 As Long, ByVal x As Long, ByVal y As Long)
If Button = 1 Then
 ActiveChart.Axes(xlValue).MaximumScale = _
 ActiveChart.Axes(xlValue).MaximumScale - 50
End If
If Button = 2 Then
 ActiveChart.Axes(xlValue).MaximumScale = _
 ActiveChart.Axes(xlValue).MaximumScale + 50
End If
End Sub

Chart_MouseMove(ByVal Button As Long, ByVal Shift As Long, ByVal
x As Long, ByVal y As Long)

Chart_MouseMove occurs as the cursor is moved over a chart. Button is the mouse button

being held down, if any; Shift is whether a Shift, Ctrl, or Alt key was pressed; X is the X

coordinate of the cursor on the chart; Y is the Y coordinate of the cursor on the chart.

Chart_MouseUp(ByVal Button As Long, ByVal Shift As Long, ByVal x
As Long, ByVal y As Long)

Chart_MouseUp occurs when any mouse button is released while the cursor is on the chart.

Button is the mouse button that was clicked; Shift is whether a Shift, Ctrl, or Alt key was

pressed; X is the X coordinate of the cursor when the button is released; Y is the Y coordi-

nate of the cursor when the button is released.

Chart_Resize()

Chart_Resize occurs when a chart is resized using the sizing handles. However, this does

not occur when the size is changed using the size control on the Format tab of the chart

tools.

Chart_Select(ByVal ElementID As Long, ByVal Arg1 As Long, ByVal
Arg2 As Long)

Chart_Select occurs when a chart element is selected. ElementID is the part of the chart

selected such as the legend. Arg1 and Arg2 are dependent upon the ElementID.

175Chart Sheet Events

The following code highlights the data set when a point on the chart is selected—assuming

the series starts in A1 and each row is a point to plot—as shown in Figure 9.7:

Private Sub MyChartClass_Select(ByVal ElementID As Long, ByVal Arg1 _
 As Long, ByVal Arg2 As Long)
If Arg1 = 0 Then Exit Sub
Sheets(“Sheet1”).Cells.Interior.ColorIndex = xlNone
 If ElementID = 3 Then
 If Arg2 = -1 Then
 ‘ Selected the entire series in Arg1
 Sheets(“Sheet1”).Range(“A2:A22”).Offset(0, Arg1).Interior.ColorIndex _
 = 19
 Else
 ‘ Selected a single point in range Arg1, Point Arg2
 Sheets(“Sheet1”).Range(“A1”).Offset(Arg2, Arg1).Interior.ColorIndex _
 = 19
 End If
 End If
End Sub

Figure 9.7
Use the Chart_
Select event to
highlight the data used
to create a point on the
chart.

Chart_SeriesChange(ByVal SeriesIndex As Long, ByVal PointIndex As
Long)

Chart_SeriesChange occurs when a chart data point is updated. SeriesIndex is the offset in

the Series collection of updated series; PointIndex is the offset in the Point collection of

updated point.

Chart_DragOver()

Chart_DragOver occurs when a range is dragged over to a chart. This event no longer works

in Excel 2007 or Excel 2010. However, a program using it will compile for use in legacy

versions of Excel.

Chart_DragPlot()

Chart_DragPlot occurs when a range is dragged and dropped on a chart. This event no lon-

ger works in Excel 2007 or Excel 2010. However, a program using it will compile for use in

legacy versions of Excel.

Chapter 9 Event Programming176

Application-Level Events
Application-level events affect all open workbooks in an Excel session. They require a class

module to access them. This is similar to the class module used to access events for embed-

ded chart events. Follow these steps to create the class module:

 1. Insert a class module.

 2. Rename the module cl_AppEvents.

 3. Enter the following line of code in the class module:

Public WithEvents AppEvent As Application

The application events are now available to the workbook as shown in Figure 9.8. They

are accessed in the class module rather than in a standard module.

 4. Insert a standard module.

 5. Enter the following lines of code in the standard module:

Dim myAppEvent As New cl_AppEvents
Sub InitializeAppEvent()
 Set myAppEvent.AppEvent = Application
End Sub

These lines initialize the application to recognize application events. The procedure must

be run once per session.

Workbook_Open can be used to automate the procedure to run the event once per session.

T
IP

Figure 9.8
Application events are
now available through
the class module.

The object in front of the event such as AppEvent is dependent on the name given in the class

module.N
O

T
E

AppEvent_AfterCalculate()

AppEvent_AfterCalculate occurs after all calculations are complete and there aren’t any

outstanding queries or incomplete calculations.

177Application-Level Events

AppEvent_NewWorkbook(ByVal Wb As Workbook)

AppEvent_NewWorkbook occurs when a new workbook is created. Wb is the new workbook.

The following code arranges the open workbooks in a tiled configuration:

Private Sub AppEvent_NewWorkbook(ByVal Wb As Workbook)
 Application.Windows.Arrange xlArrangeStyleTiled
End Sub

AppEvent_ProtectedViewWindowActivate(ByVal Pvw As
ProtectedViewWindow)

ProtectedViewWindowActivate occurs when a workbook in Protected View mode is acti-

vated. PVW is the workbook being activated.

AppEvent_ProtectedViewWindowBeforeClose(ByVal Pvw As
ProtectedViewWindow, ByVal Reason As XlProtectedViewCloseReason,
Cancel As Boolean)

ProtectedViewWindowBeforeClose occurs when a workbook in Protected View mode is

closed. PVW is the workbook being deactivated; Reason is why the workbook closed; Cancel

set to True prevents the workbook from closing.

AppEvent_ProtectedViewWindowDeactivate(ByVal Pvw As
ProtectedViewWindow)

ProtectedViewWindowDeactivate occurs when a workbook in Protected View mode is deac-

tivated. PVW is the workbook being deactivated.

AppEvent_ProtectedViewWindowOpen(ByVal Pvw As
ProtectedViewWindow)

ProtectedViewWindowOpen occurs when a workbook is open in Protected View mode. PVW is

the workbook being opened.

AppEvent_ProtectedViewWindowResize(ByVal Pvw As
ProtectedViewWindow)

ProtectedViewWindowResize occurs when the window of the protected workbook is resized.

However, this does not occur in the application itself. PVW is the workbook being resized.

AppEvent_SheetActivate (ByVal Sh As Object)

AppEvent_SheetActivate occurs when a sheet is activated. Sh is the worksheet or chart

sheet.

This event occurs after all other Calculation, AfterRefresh, and SheetChange events and

after Application.CalculationState is set to xlDone.

N
O

T
E

Chapter 9 Event Programming178

AppEvent_SheetBeforeDoubleClick(ByVal Sh As Object, ByVal Target
As Range, Cancel As Boolean)

AppEvent_SheetBeforeDoubleClick occurs when the user double-clicks a worksheet. Target

is the selected range on the sheet; Cancel is set to False by default. However, when set to

True, it prevents the default action such as entering a cell from happening.

AppEvent_SheetBeforeRightClick(ByVal Sh As Object, ByVal Target
As Range, Cancel As Boolean)

AppEvent_SheetBeforeRightClick occurs when the user right-clicks any worksheet. Sh is the

active worksheet; Target is the object right-clicked; Cancel set to True prevents the default

action from taking place.

AppEvent_SheetCalculate(ByVal Sh As Object)

AppEvent_SheetCalculate occurs when any worksheet is recalculated or any updated data is

plotted on a chart. Sh is the active sheet.

AppEvent_SheetChange(ByVal Sh As Object, ByVal Target As Range)

AppEvent_SheetChange occurs when the value of any cell is changed. Sh is the worksheet;

Target is the changed range.

AppEvent_SheetDeactivate(ByVal Sh As Object)

AppEvent_SheetDeactivate occurs when any chart sheet or worksheet in a workbook is

deactivated. Sh is the sheet being deactivated.

AppEvent_SheetFollowHyperlink(ByVal Sh As Object, ByVal Target As
Hyperlink)

AppEvent_SheetFollowHyperlink occurs when any hyperlink is clicked in Excel. Sh is the

active worksheet; Target is the hyperlink.

AppEvent_SheetSelectionChange(ByVal Sh As Object, ByVal Target As
Range)

AppEvent_SheetSelectionChange occurs when a new range is selected on any sheet. Sh is the

active sheet; Target is the selected range.

AppEvent_SheetPivotTableUpdate(ByVal Sh As Object, ByVal Target
As PivotTable)

AppEvent_SheetPivotTableUpdate occurs when a pivot table is updated. Sh is the active

sheet; Target is the updated pivot table.

179Application-Level Events

AppEvent_WindowActivate(ByVal Wb As Workbook, ByVal Wn As Window)

AppEvent_WindowActivate occurs when any workbook window is activated. Wb is the work-

book being deactivated; Wn is the window. Works only if there are multiple windows.

AppEvent_WindowDeactivate(ByVal Wb As Workbook, ByVal Wn As
Window)

AppEvent_WindowDeactivate occurs when any workbook window is deactivated. Wb is the

active workbook; Wn is the window. Works only if there are multiple windows.

AppEvent_WindowResize(ByVal Wb As Workbook, ByVal Wn As Window)

AppEvent_WindowResize occurs when the active workbook is resized. Wb is the active work-

book; Wn is the window. Works only if there are multiple windows.

If you disable the capability to resize (EnableResize = False), the minimize and maximize

buttons are removed, and the workbook cannot be resized. To undo this, type ActiveWindow.

EnableResize = True in the Immediate window.

C A U T I O N

AppEvent_WorkbookActivate(ByVal Wb As Workbook)

AppEvent_WorkbookActivate occurs when any workbook is activated. Wn is the window. The

following sample maximizes any workbook when it is activated:

Private Sub AppEvent_WorkbookActivate(ByVal Wb as Workbook)
 Wb.WindowState = xlMaximized
End Sub

AppEvent_WorkbookAddinInstall(ByVal Wb As Workbook)

AppEvent_WorkbookAddinInstall occurs when a workbook is installed as an add-in (File,

Options, Add-ins). Double-clicking an XLAM file to open it does not activate the event. Wb

is the workbook being installed.

AppEvent_WorkbookAddinUninstall(ByVal Wb As Workbook)

AppEvent_WorkbookAddinUninstall occurs when a workbook (add-in) is uninstalled. The

add-in is not automatically closed. Wb is the workbook being uninstalled.

AppEvent_WorkbookBeforeClose(ByVal Wb As Workbook, Cancel As
Boolean)

AppEvent_WorkbookBeforeClose occurs when a workbook closes. Wb is the workbook; Cancel

set to True prevents the workbook from closing.

Chapter 9 Event Programming180

AppEvent_WorkbookBeforePrint(ByVal Wb As Workbook, Cancel As
Boolean)

AppEvent_WorkbookBeforePrint occurs when any print command is used (via the ribbon,

keyboard, or a macro). Wb is the workbook; Cancel set to True prevents the workbook from

being printed.

The following code places the username in the footer of the active sheet printed:

Private Sub AppEvent_WorkbookBeforePrint(ByVal Wb As Workbook, _
 Cancel As Boolean)
Wb.ActiveSheet.PageSetup.LeftFooter = Application.UserName
End Sub

AppEvent_WorkbookBeforeSave(ByVal Wb As Workbook, ByVal SaveAsUI
As Boolean, Cancel As Boolean)

AppEvent_Workbook_BeforeSave occurs when the workbook is saved. Wb is the workbook;

SaveAsUI is set to True if the Save As dialog box is to be displayed; Cancel set to True pre-

vents the workbook from being saved.

AppEvent_WorkbookNewSheet(ByVal Wb As Workbook, ByVal Sh As
Object)

AppEvent_WorkbookNewSheet occurs when a new sheet is added to the active workbook. Wb is

the workbook; Sh is the new worksheet or chart sheet object.

AppEvent_WorkbookOpen(ByVal Wb As Workbook)

AppEvent_WorkbookOpen occurs when a workbook is opened. Wb is the workbook that was

just opened.

AppEvent_WorkbookPivotTableCloseConnection(ByVal Wb As Workbook,
ByVal Target As PivotTable)

AppEvent_PivotTableCloseConnection occurs when a pivot table report closes its connection

to its data source. Wb is the workbook containing the pivot table that triggered the event;

Target is pivot table that has closed the connection.

AppEvent_WorkbookPivotTableOpenConnection(ByVal Wb As Workbook,
ByVal Target As PivotTable)

AppEvent_PivotTableOpenConnection occurs when a pivot table report opens a connection

to its data source. Wb is the workbook containing the pivot table that triggered the event;

Target is the pivot table that has opened the connection.

181Application-Level Events

AppEvent_WorkbookRowsetComplete(ByVal Wb As Workbook, ByVal
Description As String, ByVal Sheet As String, ByVal Success As
Boolean)

AppEvent_RowsetComplete occurs when the user drills through a recordset or calls upon

the rowset action on an OLAP pivot table. Wb is the workbook that triggered the event;

Description is a description of the event; Sheet is the name of the sheet on which the

recordset is created; Success indicates success or failure.

AppEvent_WorkbookSync(ByVal Wb As Workbook, ByVal SyncEventType
As Office.MsoSyncEventType)

AppEvent_Workbook_Sync occurs when the local copy of a sheet in a workbook that is part

of a Document Workspace is synchronized with the copy on the server. Wb is the workbook

that triggered the event; SyncEventType is the status of the synchronization.

AppEvent_WorkbookBeforeXmlExport(ByVal Wb As Workbook, ByVal Map
As XmlMap, ByVal Url As String, Cancel As Boolean)

AppEvent_WorkbookBeforeXmlExport occurs when XML data is exported or saved. Wb is the

workbook that triggered the event; Map is the map used to export or save the data; Url is the

location of the XML file; Cancel set to True cancels the export operation.

AppEvent_WorkbookAfterXmlExport(ByVal Wb As Workbook,
ByVal Map As XmlMap, ByVal Url As String, ByVal Result As
XlXmlExportResult)

AppEvent_WorkbookAfterXmlExport occurs after XML data is exported or saved. Wb is the

workbook that triggered the event; Map is the map used to export or save the data; Url is the

location of the XML file; Result indicates success or failure.

AppEvent_WorkbookBeforeXmlImport(ByVal Wb As Workbook, ByVal
Map As XmlMap, ByVal Url As String, ByVal IsRefresh As Boolean,
Cancel As Boolean)

AppEvent_WorkbookBeforeXmlImport occurs when XML data is imported or refreshed. Wb is

the workbook that triggered the event; Map is the map used to import the data; Url is the

location of the XML file; IsRefresh returns True if the event was triggered by refreshing an

existing connection and False if triggered by importing from a new data source; Cancel set

to True cancels the import or refresh operation.

AppEvent_WorkbookAfterXmlImport(ByVal Wb As Workbook, ByVal
Map As XmlMap, ByVal IsRefresh As Boolean, ByVal Result As
XlXmlImportResult)

AppEvent_WorkbookAfterXmlImport occurs when XML data is exported or saved. Wb is

the workbook that triggered the event; Map is the map used to export or save the data;

IsRefresh returns True if the event was triggered by refreshing an existing connection and

False if triggered by importing from a new data source; Result indicates success or failure.

User Interaction Methods
Userforms enable you to display information and

allow the user to input information. InputBox and

MsgBox controls are simple ways of doing this. You

can use the userform controls in the VB Editor to

create forms that are more complex.

This chapter covers simple user interfaces using

input boxes and message boxes and the basics of

creating userforms in the VB Editor.

 To learn more about advanced userform programming, see Chapter 23,
“Advanced Userform Techniques.”

Input Boxes
The InputBox function is used to create a basic

interface element that requests input from the user

before the program can continue. You can config-

ure the prompt, the title for the window, a default

value, the window position, and user help files. The

only two buttons provided are the OK and Cancel

buttons. The returned value is a string.

Userforms: An Introduction

10

Chapter 10 Userforms: An Introduction184

Message Boxes
The MsgBox function creates a message box that displays information and waits for the user

to click a button before continuing. Whereas InputBox only has OK and Cancel buttons,

the MsgBox function allows you to choose from several configurations of buttons, including

Yes, No, OK, and Cancel. You can also configure the prompt, the window title, and help

files. The following code produces a prompt to find out whether the user wants to con-

tinue. A Select Case statement is then used to continue the program with the appropriate

action. Figure 10.2 shows the resulting customized message box.

myTitle = “Sample Message”
MyMsg = “Do you want to Continue?”
Response = MsgBox(myMsg, vbExclamation + vbYesNoCancel, myTitle)
Select Case Response
 Case Is = vbYes
 ActiveWorkbook.Close SaveChanges:=False

Figure 10.1
A simple but effective
input box.

Figure 10.2
The MsgBox function is
used to display informa-
tion and obtain a basic
response from the user.

 Case Is = vbNo
 ActiveWorkbook.Close SaveChanges:=True
 Case Is = vbCancel
 Exit Sub
End Select

Creating a Userform
Userforms combine the capabilities of InputBox and MsgBox to create a more efficient way

of interacting with the user. For example, rather than have the user fill out personal infor-

mation on a sheet, you can create a userform that prompts for the required data (see Figure

10.3).

The following code asks the user for the number of months to be averaged. Figure 10.1

shows the resulting InputBox.

AveMos = InputBox(Prompt:=”Enter the number “ & _
“ of months to average”, Title:=”Enter Months”, _
Default:=”3”)

185Creating a Userform

Insert a userform in the VB Editor by selecting Insert, UserForm from the main menu.

When a UserForm module is added to the Project Explorer, a blank form appears in the

window where your code usually is, and the Controls toolbox appears.

You can resize the form by grabbing and dragging the handles on the right side, bottom

edge, or lower-right corner of the userform. To add controls to the form, click the desired

control in the toolbox and draw it on the form. Controls can be moved and resized at any

time.

Figure 10.3
Create a custom userform
to get more information
from the user.

By default, the toolbox displays the most common controls. To access more controls, right-click the tool-

box and select Additional Controls. However, be careful; other users may not have the same additional

controls as you do. If you send these users a form with a control they do not have installed, the program

will generate an error.

N
O

T
E

After a control is added to a form, its properties can be changed from the Properties

window. These properties can be set manually now or set later programmatically. If the

Properties window is not visible, you can bring it up by selecting View, Properties Window.

Figure 10.4 shows the Properties window for a text box.

Figure 10.4
Use the Properties
window to change the
properties of a control.

Chapter 10 Userforms: An Introduction186

Calling and Hiding a Userform
A userform can be called from any module. FormName.Show pops up a form for the user:

frm_AddEmp.Show

The Load method can also be used to call a userform. This allows a form to be loaded but

remain hidden:

Load frm_AddEmp

To hide a userform, use the Hide method. The form is still active but hidden from the user.

However, the controls on the form can still be accessed programmatically:

Frm_AddEmp.Hide

The Unload method unloads the form from memory and removes it from the user’s view,

which means the form cannot be accessed by the user or programmatically:

Unload Me

Me is a keyword that can be used to refer to the userform itself. It can be used in the code of any control

to refer to itself.

T
IP

Programming the Userform
The code for a control goes in the Forms module. Unlike the other modules, double-click-

ing the Forms module opens up the form in Design view. To view the code, you can right-

click either the module or the userform in Design mode and select View Code.

Userform Events
Just like a worksheet, a userform has events triggered by actions. After the userform has

been added to the project, the events are available in the Properties drop-down list at the

top-right of the code window (see Figure 10.5) by selecting UserForm from the Objects

drop-down on the left.

Figure 10.5
Various events for the
userform can be selected
from the drop-down list
at the top of the code
window.

187Programming the Userform

The available events for userforms are described in Table 10.1.

Table 10.1 The Events for Userforms

Event Description

Activate Occurs when a userform is shown either from being loaded or unhidden. This
event is triggered after the Initialize event.

AddControl Occurs when a control is added to a userform at runtime. Does not run at
design time or upon userform initialization.

BeforeDragOver Occurs while the user does a drag and drop onto the userform.

BeforeDroporPaste Occurs right before the user is about to drop or paste data into the userform.

Click Occurs when the user clicks the userform with the mouse.

DblClick Occurs when the user double-clicks the userform with the mouse. If a click
event is also in use, the double-click event will not work.

Deactivate Occurs when a userform is deactivated.

Error Occurs when the userform runs into an error and cannot return the error
information.

Initialize Occurs when the userform is first loaded, before the Activate event. If you
hide then show a form, Initialize will not trigger.

KeyDown Occurs when the user presses a key on the keyboard.

KeyPress Occurs when the user presses an ANSI key. An ANSI key is a typeable charac-
ter such as the letter A. An example of a nontypeable character is the Tab key.

KeyUp Occurs when the user releases a key on the keyboard.

Layout Occurs when the control changes size.

MouseDown Occurs when the user presses the mouse button within the borders of the user-
form.

MouseMove Occurs when the user moves the mouse within the borders of the userform.

MouseUp Occurs when the user releases the mouse button within the borders of the
userform.

QueryClose Occurs before a userform closes. It allows you to recognize the method used to
close a form and have code respond accordingly.

RemoveControl Occurs when a control is deleted from within the userform.

Resize Occurs when the userform is resized.

Scroll Occurs when a visible scrollbar box is repositioned.

Terminate Occurs after the userform has been unloaded. This is triggered after
QueryClose.

Zoom Occurs when the zoom value is changed.

Chapter 10 Userforms: An Introduction188

Programming Controls
To program a control, highlight the control and select View, Code. The footer, header, and

default action for the control is entered in the programming field automatically. To see the

other actions that are available for a control, select the control from the Object drop-down

and view the actions in the Properties drop-down, as shown in Figure 10.6.

Figure 10.6
Various actions for a con-
trol can be selected from
the VB Editor drop-downs.

The controls are objects, like ActiveWorkbook. They have properties and methods, depen-

dent on the type of control. Most of the programming for the controls is done behind the

form. However, if another module needs to refer to a control, the parent, which is the form,

needs to be included with the object. Here’s how this is done:

Private Sub btn_EmpCancel_Click()
Unload Me
End Sub

The preceding code can be broken down into three sections:

■ btn_EmpCancel—Name given to the control

■ Click—Action of the control

■ Unload Me—The code behind the control, which, in this case, is unloading the form)

Change the (Name) property in the control’s Properties window to rename a control from the default

assigned by the editor.

T
IP

189Using Basic Form Controls

Using Basic Form Controls
Each control has different events associated with it, which allows you to code what happens

based on the user’s actions. A table reviewing the control events is available at the end of

each of the sections that follow.

Using Labels, Text Boxes, and Command Buttons
The basic form shown in Figure 10.7 consists of labels, text boxes, and command buttons.

It is a simple yet effective method of requesting information from the user. After the text

boxes have been filled in, the user clicks OK, and the information is added to a sheet (see

Figure 10.8).

If you have been using a userform for some time and later try to add a new control, you might find that Excel seems to

get confused about the control. You will see that the control is added to the form, but when you right-click the control and

select View Code, the code module does not seem to acknowledge that the control exists. The control name will not be

available in the left drop-down at the top of the code module.

To work around this situation, follow these steps:

 1. Add all the controls you need to add to the existing userform.

 2. In the Project Explorer, right-click the userform and select Export File. Select Save to save the file in the default loca-

tion.

 3. In the Project Explorer, right-click the userform and select Remove. Because you just exported the userform, click No

to the question about exporting.

 4. Right-click anywhere in the Project Explorer and select Import File. Select the filename that you saved in step 2.

The new controls will now be available in the code pane of the userform.

C A S E S T U D Y: B U G F I X W H E N A D D I N G C O N T R O L S T O A N E X I S T I N G F O R M

Figure 10.7
A simple form to collect
information from the user.

Figure 10.8
The information is added
to the sheet.

Chapter 10 Userforms: An Introduction190

Private Sub btn_EmpOK_Click()
Dim LastRow As Long
LastRow = Worksheets(“Employee”).Cells(Worksheets(“Employee”).Rows.Count, 1) _
.End(xlUp).Row + 1
Cells(LastRow, 1).Value = tb_EmpName.Value
Cells(LastRow, 2).Value = tb_EmpPosition.Value
Cells(LastRow, 3).Value = tb_EmpHireDate.Value
End Sub

With a change in the code shown in the following sample, the same form design can be used

to retrieve information. The following code retrieves the position and hire date after the

employee’s name is entered:

Private Sub btn_EmpOK_Click()
Dim EmpFound As Range
With Range(“EmpList”) ‘a named range on a sheet listing the employee names
 Set EmpFound = .Find(tb_EmpName.Value)
 If EmpFound Is Nothing Then
 MsgBox “Employee not found!”
 tb_EmpName.Value = “”

 Else
 With Range(EmpFound.Address)
 tb_EmpPosition = .Offset(0, 1)
 tb_HireDate = .Offset(0, 2)
 End With
 End If
End With
Set EmpFound = Nothing
End Sub

The available events for Label, TextBox, and CommandButton controls are described in Table 10.2.

Table 10.2 The Events for Label, TextBox, and CommandButton Controls

Event Description

AfterUpdate2 Occurs after the control’s data has been changed by the user.

BeforeDragOver Occurs while the user drags and drops data onto the control.

BeforeDropOrPaste Occurs right before the user is about to drop or paste data into the control.

BeforeUpdate2 Occurs before the data in the control is changed.

Change2 Occurs when the value of the control is changed.

Click1,3 Occurs when the user clicks the control with the mouse.

DblClick Occurs when the user double-clicks the control with the mouse.

DropButtonClick2 Occurs when the user presses F4 on the keyboard. This is similar to the drop-down
control on the combo box, but there is no drop-down on a text box.

Enter2,3 Occurs right before the control receives the focus from another control on the same
userform.

Error Occurs when the control runs into an error and cannot return the error informa-
tion.

191Using Basic Form Controls

Exit2,3 Occurs right after the control loses focus to another control on the same userform.

KeyDown2,3 Occurs when the user presses a key on the keyboard.

KeyPress2,3 Occurs when the user presses an ANSI key. An ANSI key is a typeable character
such as the letter A. An example of a nontypeable character is the Tab key.

KeyUp2,3 Occurs when the user releases a key on the keyboard.

MouseDown Occurs when the user presses the mouse button within the borders of the control.

MouseMove Occurs when the user moves the mouse within the borders of the control.

MouseUp Occurs when the user releases the mouse button within the borders of the control.

1Label control only

2TextBox control only

3CommandButton control only

Deciding Whether to Use List Boxes or Combo Boxes in Forms
You can let users type in an employee name to search for, but what if they misspell the

name? You need a way to make sure that the name is typed correctly. Which do you use: a

list box or a combo box?

 ■ A list box displays a list of values from which the user can choose.

 ■ A combo box displays a list of values from which the user can choose and allows the

user to enter a new value.

In this case, when you want to limit user options, you should use a list box to list the

employee names, as shown in Figure 10.9.

Figure 10.9
Use a list box to control
user input.

In the RowSource property of the list box, enter the range from which the control should

draw its data. Use a dynamic named range to keep the list updated if employees are added,

as shown in the following code:

Private Sub btn_EmpOK_Click()

Chapter 10 Userforms: An Introduction192

Dim EmpFound As Range
With Range(“EmpList”)
 Set EmpFound = .Find(lb_EmpName.Value)
 If EmpFound Is Nothing Then
 MsgBox (“Employee not found!”)
 lb_EmpName.Value = “”
 Exit Sub
 Else
 With Range(EmpFound.Address)
 tb_EmpPosition = .Offset(0, 1)
 tb_HireDate = .Offset(0, 2)
 End With
 End If
End With
End Sub

Using the MultiSelect Property of a List Box

List boxes have a MultiSelect property, which allows the user to select multiple items from

the choices in the list box, as shown in Figure 10.10:

 ■ fmMultiSelectSingle—The default setting allows only a single item selection at a time.

 ■ fmMultiSelectMulti—Allows an item to be deselected by clicking it again; multiple

items can also be selected.

 ■ fmMultiSelectExtended—Allows the Ctrl and Shift keys to be used to select multiple

items.

If multiple items are selected, the Value property cannot be used to retrieve the items.

Instead, check to see whether the item is selected, and then manipulate it as needed using

the following code:

Private Sub btn_EmpOK_Click()
Dim LastRow As Long, i As Integer
LastRow = Worksheets(“Sheet2”).Cells(Worksheets(“Sheet2”).Rows.Count, 1) _
.End(xlUp).Row + 1
Cells(LastRow, 1).Value = tb_EmpName.Value
‘check the selection status of the items in the ListBox
For i = 0 To lb_EmpPosition.ListCount – 1
‘if the item is selected, add it to the sheet
 If lb_EmpPosition.Selected(i) = True Then
 Cells(LastRow, 2).Value = Cells(LastRow, 2).Value & _
 lb_EmpPosition.List(i) & “,”
 End If
Next i
Cells(LastRow, 2).Value = Left(Cells(LastRow, 2).Value, _
Len(Cells(LastRow, 2).Value) - 1)
Cells(LastRow, 3).Value = tb_HireDate.Value
End Sub

The items in a list box start counting at zero. For this reason, if you use the ListCount

property, you must subtract one from the result:

For i = 0 To lb_EmpPosition.ListCount – 1

193Using Basic Form Controls

The available events for ListBox controls and ComboBox controls are described in Table 10.3.

Table 10.3 Events for ListBox and ComboBox Controls

Event Description

AfterUpdate Occurs after the control’s data has been changed by the user.

BeforeDragOver Occurs while the user drags and drops data onto the control.

BeforeDropOrPaste Occurs right before the user is about to drop or paste data into
the control.

BeforeUpdate Occurs before the data in the control is changed.

Change Occurs when the value of the control is changed.

Click Occurs when the user selects a value from the list box or combo
box.

DblClick Occurs when the user double-clicks the control with the mouse.

DropButtonClick1 Occurs when the drop-down list appears after the user clicks the
drop-down arrow of the combo box or presses F4 on the key-
board.

Enter Occurs right before the control receives the focus from another
control on the same userform.

Error Occurs when the control runs into an error and can’t return the
error information.

Exit Occurs right after the control loses focus to another control on
the same userform.

KeyDown Occurs when the user presses a key on the keyboard.

KeyPress Occurs when the user presses an ANSI key. An ANSI key is a
typeable character such as the letter A. An example of a nontype-
able character is the Tab key.

KeyUp Occurs when the user releases a key on the keyboard.

MouseDown Occurs when the user presses the mouse button within the bor-
ders of the control.

Figure 10.10
MultiSelect allows
the user to select multiple
items from a list box.

Chapter 10 Userforms: An Introduction194

MouseMove Occurs when the user moves the mouse within the borders of the
control.

MouseUp Occurs when the user releases the mouse button within the bor-
ders of the control.

1ComboBox control only

Adding Option Buttons to a Userform
Option buttons are similar to check boxes in that they can be used to make a selection.

However, unlike check boxes, option buttons can be configured to allow only one selection

out of a group.

Using the Frame tool, draw a frame to separate the next set of controls from the other

controls on the userform. The frame is used to group option buttons together, as shown in

Figure 10.11.

Figure 10.11
Use a frame to group
option buttons together.

Option buttons have a GroupName property. If you assign the same group name, Buildings,

to a set of option buttons, you force them to act collectively as a toggle, so that only

one button in the set can be selected. Selecting an option button automatically deselects

the other buttons in the same group or frame. To prevent this behavior, either leave the

GroupName property blank or enter another name.

For users who prefer to select the option button’s label rather than the button itself, create a separate

label and add code to the label to trigger the option button.

Private Sub Lbl_Bldg1_Click()
Obtn_Bldg1.Value = True
End Sub

T
IP

The available events for OptionButton controls and Frame controls are described in Table

10.4.

195Using Basic Form Controls

Table 10.4 Events for OptionButton and Frame Controls

Event Description

AfterUpdate1 Occurs after the control’s data has been changed by the user.

AddControl2 Occurs when a control is added to a frame on a form at runtime. Does not run
at design time or upon userform initialization.

BeforeDragOver Occurs while the user does a drag and drop onto the control.

BeforeDropOrPaste Occurs right before the user is about to drop or paste data into the control.

BeforeUpdate1 Occurs before the data in the control is changed.

Change1 Occurs when the value of the control is changed.

Click Occurs when the user clicks the control with the mouse.

DblClick Occurs when the user double-clicks the control with the mouse.

Enter Occurs right before the control receives the focus from another control on the
same userform.

Error Occurs when the control runs into an error and cannot return the error infor-
mation.

Exit Occurs right after the control loses focus to another control on the same user-
form.

KeyDown Occurs when the user presses a key on the keyboard.

KeyPress Occurs when the user presses an ANSI key. An ANSI key is a typeable charac-
ter such as the letter A. An example of a nontypeable characteris the Tab key.

KeyUp Occurs when the user releases a key on the keyboard.

Layout2 Occurs when the frame changes size.

MouseDown Occurs when the user presses the mouse button within the borders of the con-
trol.

MouseMove Occurs when the user moves the mouse within the borders of the control.

MouseUp Occurs when the user releases the mouse button within the borders of the con-
trol.

RemoveControl2 Occurs when a control is deleted from within the frame control.

Scroll2 Occurs when the scrollbar box, if visible, is repositioned.

Zoom2 Occurs when the zoom value is changed.

1OptionButton control only

2Frame control only

Adding Graphics to a Userform
A listing on a form can be even more helpful if a corresponding graphic is added to the

form. The following code displays the photograph corresponding to the selected employee

from the list box:

Chapter 10 Userforms: An Introduction196

Private Sub lb_EmpName_Change()
Dim EmpFound As Range
With Range(“EmpList”)
 Set EmpFound = .Find(lb_EmpName.Value)
 If EmpFound Is Nothing Then
 MsgBox “Employee not found!”
 lb_EmpName.Value = “”
 Else
 With Range(EmpFound.Address)
 tb_EmpPosition = .Offset(0, 1)
 tb_HireDate = .Offset(0, 2)
 On Error Resume Next
 Img_Employee.Picture = LoadPicture _
 (“C:\Excel VBA 2007 by Jelen & Syrstad\” & EmpFound & “.bmp”)
 On Error GoTo 0
 End With
 End If
End With
Set EmpFound = Nothing
Exit Sub

The available events for Graphic controls are described in Table 10.5.

Table 10.5 Events for Graphic Controls

Event Description

BeforeDragOver Occurs while the user drags and drops data onto the control.

BeforeDropOrPaste Occurs right before the user is about to drop or paste data into the control.

Click Occurs when the user clicks the image with the mouse.

DblClick Occurs when the user double-clicks the image with the mouse.

Error Occurs when the control runs into an error and can’t return the error informa-
tion.

MouseDown Occurs when the user presses the mouse button within the borders of the image.

MouseMove Occurs when the user moves the mouse within the borders of the image.

MouseUp Occurs when the user releases the mouse button within the borders of the con-
trol.

Using a Spin Button on a Userform
As it is, the Hire Date field allows the user to enter the date in any format including 1/1/1

or January 1, 2001. This possible inconsistency can create problems later on if you need to

use or search for dates. The solution? Force users to enter dates in a unified manner.

Spin buttons allow the user to increment/decrement through a series of numbers. In this

way, the user is forced to enter numbers rather than text.

197Using Basic Form Controls

Draw a spin button for a Month entry on the form. In the Properties, set the Min to 1 for

January and the Max to 12 for December. In the Value property, enter 1, the first month.

Next, draw a text box next to the spin button. This text box reflects the value of the spin

button. In addition, labels can be used.

Private Sub SpBtn_Month_Change()
tb_Month.Value = SpBtn_Month.Value
End Sub

Finish building the form. Use a Min of 1 and Max of 31 for days or a Min of 1900 and a

Max of 2100 for Year:

Private Sub btn_EmpOK_Click()
Dim LastRow As Long, i As Integer
LastRow = Worksheets(“Sheet2”).Cells(Worksheets(“Sheet2”).Rows.Count, 1) _
.End(xlUp).Row + 1
Cells(LastRow, 1).Value = tb_EmpName.Value
For i = 0 To lb_EmpPosition.ListCount - 1
 If lb_EmpPosition.Selected(i) = True Then
 Cells(LastRow, 2).Value = Cells(LastRow, 2).Value & _
 lb_EmpPosition.List(i) & “,”
 End If
Next i
‘Concatenate the values from the textboxes to create the date
Cells(LastRow, 3).Value = tb_Month.Value & “/” & tb_Day.Value & _
 “/” & tb_Year.Value
End Sub

The available events for SpinButton controls are described in Table 10.6.

Table 10.6 Events for SpinButton Controls

Event Description

AfterUpdate Occurs after the control’s data has been changed by the user.

BeforeDragOver Occurs while the user drags and drops data onto the control.

BeforeDropOrPaste Occurs right before the user is about to drop or paste data into the control.

BeforeUpdate Occurs before the data in the control is changed.

Change Occurs when the value of the control is changed.

DblClick Occurs when the user double-clicks the control.

Enter Occurs right before the control receives the focus from another control on the
same userform.

Error Occurs when the control runs into an error and cannot return the error infor-
mation.

Exit Occurs right after the control loses focus to another control on the same user-
form.

KeyDown Occurs when the user presses a key on the keyboard.

KeyPress Occurs when the user presses an ANSI key. An ANSI key is a typeable charac-
ter such as the letter A. An example of a nontypeable character is the Tab key.

Chapter 10 Userforms: An Introduction198

KeyUp Occurs when the user releases a key on the keyboard.

SpinDown Occurs when the user clicks the lower or left spin button, decreasing the value.

SpinUp Occurs when the user clicks the upper or right spin button, increasing the
value.

Using the MultiPage Control to Combine Forms
The MultiPage control provides a neat way of organizing multiple forms. Instead of having

a form for personal employee information and one for on-the-job information, combine the

information into one multipage form, as shown in Figures 10.12 and 10.13.

Figure 10.12
Use the MultiPage
control to combine
multiple forms. This is the
first page of the form.

Figure 10.13
This is the second page of
the form.

Adding multipage forms after the rest of the form is created is not an easy task. Therefore, plan multi-

page forms the beginning. If you decide later that you need a multipage form, insert a new form, draw

the multipage, and copy/paste the controls from the other forms to the new form.

T
IP

199Using Basic Form Controls

You can modify a page by right-clicking the tab of the page, which displays the following

menu of options: New Page, Delete Page, Rename, or Move.

Unlike many of the other controls where the Value property holds a user-entered or

selected value, the Value property of the MultiPage control holds the number of the active

page, starting at zero. For example, if you have a five-page form and want to activate the

fourth page, do this:

MultiPage1.Value = 3

If you have a control you want all the pages to share, such as the Save or Cancel buttons,

place the control on the main userform rather than on the individual pages, as shown in

Figure 10.14.

Do not right-click in the tab area to view the MultiPage code. Instead, right-click in the

MultiPage’s main area to get the View Code option.

N
O

T
E

Figure 10.14
Place common controls
like the Close button on
the main userform.

The available events for MultiPage controls are described in Table 10.7.

Table 10.7 Events for the MultiPage Control

Event Description

AddControl Occurs when a control is added to a page of the MultiPage control.
Does not run at design time or upon userform initialization.

BeforeDragOver Occurs while the user drags and drops data onto a page of the
MultiPage control.

BeforeDropOrPaste Occurs right before the user is about to drop or paste data onto a page
of the MultiPage control.

Change Occurs when the user changes pages of a multipage.

Chapter 10 Userforms: An Introduction200

Click Occurs when the user clicks on a page of the MultiPage control.

DblClick Occurs when the user double-clicks a page of the MultiPage control
with the mouse.

Enter Occurs right before the multipage receives the focus from another con-
trol on the same userform.

Error Occurs when the MultiPage control runs into an error and cannot
return the error information.

Exit Occurs right after the multipage loses focus to another control on the
same userform.

KeyDown Occurs when the user presses a key on the keyboard.

KeyPress Occurs when the user presses an ANSI key. An ANSI key is a typeable
character, such as the letter A. An example of a nontypeable character is
the Tab key.

KeyUp Occurs when the user releases a key on the keyboard.

MouseDown Occurs when the user presses the mouse button within the borders of
the control.

MouseMove Occurs when the user moves the mouse within the borders of the con-
trol.

MouseUp Occurs when the user releases the mouse button within the borders of
the control.

RemoveControl Occurs when a control is removed from a page of the multipage.

Scroll Occurs when the scrollbar box, if visible, is repositioned.

Zoom Occurs when the zoom value is changed.

Verifying Field Entry
Even if users are told to fill in all the fields, there is no way to force them to do so—except

with an electronic form. As a programmer, you can ensure that all required fields are filled

in by not allowing the user to continue until all requirements are met. Here’s how to do

this:

If tb_EmpName.Value = “” Then
 frm_AddEmp.Hide
 MsgBox (“Please enter an Employee Name”)
 frm_AddEmp.Show
 Exit Sub
End If

Illegal Window Closing
The userforms created in the VB Editor are not that different from normal windows: They

also include the X close button in the upper-right corner. Although using the button is not

wrong, it can cause problems, depending on the objective of the userform. In cases like this,

201Getting a Filename

you might want to control what happens if the user presses the button. Use the QueryClose

event of the userform to find out what method is used to close the form and code an appro-

priate action:

Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then
 MsgBox “Please use the OK or Cancel buttons to close the form”, vbCritical
 Cancel = True
End If
End Sub

After you know the method the user used to try to close the form, you can create a message

box similar to Figure 10.15 to warn the user that the method was illegal.

Figure 10.15
Control what happens
when the user clicks the
X button.

The QueryClose event can be triggered in four ways:

 ■ vbFormControlMenu—The user right-clicks either on the form’s title bar and selects the

Close command or clicks the X in the upper-right corner of the form..

■ vbFormCode—The Unload statement is used.

■ vbAppWindows—Windows shuts down.

■ vbAppTaskManager—The application is shut down by the Task Manager.

Getting a Filename
One of the most common client interactions is when you need the client to specify a path and

filename. Excel VBA has a built-in function to display the File Open dialog box, as shown in

Figure 10.16. The client browses to and selects a file. When the client selects the Open but-

ton, instead of opening the file, Excel VBA returns the full path and filename to the code.

Sub SelectFile()
‘ Ask which file to copy
x = Application.GetOpenFilename(_
 FileFilter:=”Excel Files (*.xls*), *.xls*”, _
 Title:=”Choose File to Copy”, MultiSelect:=False)

Chapter 10 Userforms: An Introduction202

‘ check in case no files were selected
If x = “False” Then Exit Sub

MsgBox “You selected “ & x
End Sub

Figure 10.16
Use the File Open dialog
box to allow the user to
select a file.

The preceding code allows the client to select one file. If you want them to specify multiple

files, use this code:

Sub ManyFiles()
Dim x As Variant

x = Application.GetOpenFilename(_
 FileFilter:=”Excel Files (*.xls*), *.xls*”, _
 Title:=”Choose Files”, MultiSelect:=True)

On Error Resume Next
If Ubound(x) > 0 Then
 For i = 1 To UBound(x)
 MsgBox “You selected “ & x(i)
 Next i
ElseIf x = “False” Then Exit Sub
End If
On Error GoTo 0

End Sub

In a similar fashion, you can use Application.GetSaveAsFileName to find the path and file-

name that should be used to save a file.

Charting in Excel 2010
Microsoft rewrote the Excel charting engine for

Excel 2007. Most code from Excel 2003 will con-

tinue to work in Excel 2010.

The following are some important methods and

features available in Excel 2010:

 ■ ApplyLayout—This method applies one of the

chart layouts available on the Design tab.

 ■ SetElement—This method chooses any of the

built-in element choices from the Layout tab.

 ■ ChartFormat—This object enables you to

change the fill, glow, line, reflection, shadow,

soft edge, or 3-D format of most individual

chart elements. This is similar to settings on

the Format tab.

 ■ AddChart—This method enables you to add a

chart to an existing worksheet.

Referencing Charts and Chart Objects
in VBA Code

If you go back far enough in Excel history, you find

that all charts used to be created as their own chart

sheets. Then, in the mid-1990s, Excel added the

amazing capability to embed a chart right onto an

existing worksheet. This allowed a report to be cre-

ated with tables of numbers and charts all on the

same page, something we take for granted today.

These two different ways of dealing with charts

make it necessary for you to deal with two separate

object models for charts. When a chart is on its

own standalone chart sheet, you are dealing with a
Chart object. When a chart is embedded in a work-

sheet, you are dealing with a ChartObject object.

Creating Charts

11

Chapter 11 Creating Charts204

Excel 2010 includes a third evolutionary branch because objects on a worksheet are also

members of the Shapes collection.

In legacy versions of Excel, to reference the color of the chart area for an embedded chart,

you must refer to the chart in this manner:

Worksheets(“Jan”).ChartObjects(“Chart 1”).Chart.ChartArea.Interior.ColorIndex _
 = 4

In Excel 2010, you can use the Shapes collection:

Worksheets(“Jan”).Shapes(“Chart 1”).Chart.ChartArea.Interior.ColorIndex = 4

In any version of Excel, if a chart is on its own chart sheet, you don’t have to specify the

container; you can simply refer to the Chart object:

Sheets(“Chart1”).ChartArea.Interior.ColorIndex = 4

Creating a Chart
In legacy versions of Excel, you used the Charts.Add command to add a new chart. Next,

you specified the source data, type of chart, and whether the chart should be on a new sheet

or embedded on an existing worksheet. The first three lines of the following code create a

clustered column chart on a new chart sheet. The fourth line moves the chart back to be an

embedded object in Sheet1:

Charts.Add
ActiveChart.SetSourceData Source:=Worksheets(“Sheet1”).Range(“A1:E4”)
ActiveChart.ChartType = xlColumnClustered
ActiveChart.Location Where:=xlLocationAsObject, Name:=”Sheet1”

If you plan to share your macros with people who still use Excel 2003, you should use the

Charts.Add method. However, if your application will be running only Excel 2007 or Excel

2010, you can use the new AddChart method. The code for the AddChart method can be as

simple as the following:

‘ Create chart on the current sheet
ActiveSheet.Shapes.AddChart.Select
ActiveChart.SetSourceData Source:=Range(“A1:E4”)
ActiveChart.ChartType = xlColumnClustered

Alternatively, you can specify the chart type, size, and location as part of the AddChart

method, as described in the next section.

Specifying the Size and Location of a Chart
The AddChart method has additional parameters you can use to specify the type of chart,

the chart’s location on the worksheet, and the size of the chart.

The location and size of a chart are specified in points (72 points = 1 inch). For example,

the Top parameter requires the number of points from the top of Row 1 to the top edge of

the worksheet.

205Creating a Chart

The following code creates a chart that roughly covers the Range C11:J30:

Sub SpecifyLocation()
 Dim WS As Worksheet
 Set WS = Worksheets(“Sheet1”)
 WS.Shapes.AddChart(xlColumnClustered, _
 Left:=100, Top:=150, _
 Width:=400, Height:=300).Select
 ActiveChart.SetSourceData Source:=WS.Range(“A1:E4”)
End Sub

It requires a lot of trial and error to randomly figure out the exact distance in points to

cause a chart to line up with a certain cell. Fortunately, you can ask VBA to tell you the

distance in points to a certain cell. If you ask for the Left property of any cell, you find the

distance to the top-left corner of that cell. You can also ask for the width of a range or the

height of a range. For example, the following code creates a chart in exactly C11:J30:

Sub SpecifyExactLocation()
 Dim WS As Worksheet
 Set WS = Worksheets(“Sheet1”)
 WS.Shapes.AddChart(xlColumnClustered, _
 Left:=WS.Range(“C11”).Left, _
 Top:=WS.Range(“C11”).Top, _
 Width:=WS.Range(“C11:J11”).Width, _
 Height:=WS.Range(“C11:C30”).Height).Select
 ActiveChart.SetSourceData Source:=WS.Range(“A1:E4”)
End Sub

In this case, you are not moving the location of the Chart object. Instead, you are mov-

ing the location of the container that contains the chart. In Excel 2010, it is either the

ChartObject or the Shape object. If you try to change the actual location of the chart, you

move it within the container. Because you can actually move the chart area a few points

in either direction inside the container, the code will run, but you will not get the desired

results.

To see a demo of specifying chart location, search for Excel VBA 11 at YouTube.

To move a chart that has already been created, you can reference either the ChartObject or

the Shape and change the Top, Left, Width, and Height properties, as shown in the following

macro:

Sub MoveAfterTheFact()
 Dim WS As Worksheet
 Set WS = Worksheets(“Sheet1”)
 With WS.ChartObjects(“Chart 9”)
 .Left = WS.Range(“C21”).Left
 .Top = WS.Range(“C21”).Top
 .Width = WS.Range(“C1:H1”).Width
 .Height = WS.Range(“C21:C25”).Height
 End With
 End Sub

Chapter 11 Creating Charts206

Later Referring to a Specific Chart
When a new chart is created, it is given a sequential name, such as Chart 1. If you select

a chart and then look in the name box, you see the name of the chart. In Figure 11.1, the

name of the chart is Chart 14. This does not mean that there are 14 charts on the work-

sheet. In this particular case, many individual charts have been created and deleted.

Name Box

Figure 11.1
Select a chart and look in
the name box to find the
name of the chart.

This means that on any given day that your macro runs, the Chart object might have a dif-

ferent name. If you need to reference the chart later in the macro, perhaps after you have

selected other cells and the chart is no longer active, you might ask VBA for the name of

the chart and store it in a variable for later use, as shown here:

Sub RememberTheName()
 Dim WS As Worksheet
 Set WS = Worksheets(“Sheet1”)
 WS.Shapes.AddChart(xlColumnClustered, _
 Left:=WS.Range(“C11”).Left, _
 Top:=WS.Range(“C11”).Top, _
 Width:=WS.Range(“C11:J11”).Width, _
 Height:=WS.Range(“C11:C30”).Height _
).Select
 ActiveChart.SetSourceData Source:=WS.Range(“A1:E4”)
 ‘ Remember the name in a variable
 ThisChartObjectName = ActiveChart.Parent.Name
 ‘ more lines of code...
 ‘ then later in the macro, you need to re-assign the chart
 With WS.Shapes(ThisChartObjectName)

207Creating a Chart

 .Chart.SetSourceData Source:=WS.Range(“A20:E24”), PlotBy:=xlColumns
 .Top = WS.Range(“C26”).Top
 End With
End Sub

In the preceding macro, the variable ThisChartObjectName contains the name of the Chart

object. This method works great if your changes will happen later in the same macro.

However, after the macro finishes running, the variable will be out of scope, and you won’t

be able to access the name later.

If you want to be able to remember a chart name, you could store the name in an out-of-

the-way cell on the worksheet. The first macro here stores the name in Cell Z1, and the

second macro then later modifies the chart using the name stored in Cell Z1:

Sub StoreTheName()
 Dim WS As Worksheet
 Set WS = Worksheets(“Sheet1”)
 WS.Shapes.AddChart(xlColumnClustered, _
 Left:=WS.Range(“C11”).Left, _
 Top:=WS.Range(“C11”).Top, _
 Width:=WS.Range(“C11:J11”).Width, _
 Height:=WS.Range(“C11:C30”).Height _
).Select
 ActiveChart.SetSourceData Source:=WS.Range(“A1:E4”)
 Range(“Z1”).Value = ActiveChart.Parent.Name
End Sub

After the previous macro stored the name in Cell Z1, the following macro will use the value

in Z1 to figure out which chart to change:

Sub ChangeTheChartLater()
 Dim WS As Worksheet
 Set WS = Worksheets(“Sheet1”)
 MyName = WS.Range(“Z1”).Value
 With WS.Shapes(MyName)
 .Chart.SetSourceData Source:=WS.Range(“A20:E24”), PlotBy:=xlColumns
 .Top = WS.Range(“C26”).Top
 End With

End Sub

If you need to modify a preexisting chart—such as a chart that you did not create—and

there is only one chart on the worksheet, you can use this line of code:

WS.ChartObjects(1).Chart.Interior.ColorIndex = 4

If there are many charts, and you need to find the one with the upper-left corner located in

Cell A4, you can loop through all the Chart objects until you find one in the correct loca-

tion, like this:

For each Cht in ActiveSheet.ChartObjects
 If Cht.TopLeftCell.Address = “A4” then
 Cht.Interior.ColorIndex = 4
 end if
Next Cht

Chapter 11 Creating Charts208

Recording Commands from the Layout or Design Tabs
With charts in Excel 2010, there are three levels of chart changes. The global chart settings

that indicate the chart type and style are on the Design tab. Selections from the built-in ele-

ment settings appear on the Layout tab. You make microchanges by using the Format tab.

The macro recorder was not finished in Excel 2007, but it is working in Excel 2010. If you

need to make certain changes, this enables you to quickly record a macro and then copy its

code.

Specifying a Built-in Chart Type
Excel 2010 has 73 built-in chart types. To change a chart to one of the 73 types, you use the

ChartType property. This property can be applied either to a chart or to a series within a

chart. Here is an example that changes the type for the entire chart:

ActiveChart.ChartType = xlBubble

To change the second series on a chart to a line chart, you use this:

ActiveChart.Series(2).ChartType = xlLine

Table 11.1 lists the 73 chart type constants that you can use to create various charts. The

sequence of Table 11.1 matches the sequence of the charts in the Chart Type dialog.

Table 11.1 Chart Types for Use in VBA

Chart Type Constant

Clustered Column xlColumnClustered

Stacked Column xlColumnStacked

100% Stacked Column xlColumnStacked100

3-D Clustered Column xl3DColumnClustered

Stacked Column in 3-D xl3DColumnStacked

100% Stacked Column in 3-D xl3DColumnStacked100

3-D Column xl3DColumn

Clustered Cylinder xlCylinderColClustered

Stacked Cylinder xlCylinderColStacked

100% Stacked Cylinder xlCylinderColStacked100

3-D Cylinder xlCylinderCol

Clustered Cone xlConeColClustered

Stacked Cone xlConeColStacked

100% Stacked Cone xlConeColStacked100

3-D Cone xlConeCol

209Recording Commands from the Layout or Design Tabs

Chart Type Constant

Clustered Pyramid xlPyramidColClustered

Stacked Pyramid xlPyramidColStacked

100% Stacked Pyramid xlPyramidColStacked100

3-D Pyramid xlPyramidCol

Line xlLine

Stacked Line xlLineStacked

100% Stacked Line xlLineStacked100

Line with Markers xlLineMarkers

Stacked Line with Markers xlLineMarkersStacked

100% Stacked Line with Markers xlLineMarkersStacked100

3-D Line xl3DLine

Pie xlPie

Pie in 3-D xl3DPie

Pie of Pie xlPieOfPie

Exploded Pie xlPieExploded

Exploded Pie in 3-D xl3DPieExploded

Bar of Pie xlBarOfPie

Clustered Bar xlBarClustered

Stacked Bar xlBarStacked

100% Stacked Bar xlBarStacked100

Clustered Bar in 3-D xl3DBarClustered

Stacked Bar in 3-D xl3DBarStacked

100% Stacked Bar in 3-D xl3DBarStacked100

Clustered Horizontal Cylinder xlCylinderBarClustered

Stacked Horizontal Cylinder xlCylinderBarStacked

100% Stacked Horizontal Cylinder xlCylinderBarStacked100

Clustered Horizontal Cone xlConeBarClustered

Stacked Horizontal Cone xlConeBarStacked

100% Stacked Horizontal Cone xlConeBarStacked100

Clustered Horizontal Pyramid xlPyramidBarClustered

Stacked Horizontal Pyramid xlPyramidBarStacked

100% Stacked Horizontal Pyramid xlPyramidBarStacked100

Area xlArea

Stacked Area xlAreaStacked

Chapter 11 Creating Charts210

Chart Type Constant

100% Stacked Area xlAreaStacked100

3-D Area xl3DArea

Stacked Area in 3-D xl3DAreaStacked

100% Stacked Area in 3-D xl3DAreaStacked100

Scatter with only Markers xlXYScatter

Scatter with Smooth Lines and Markers xlXYScatterSmooth

Scatter with Smooth Lines xlXYScatterSmoothNoMarkers

Scatter with Straight Lines and Markers xlXYScatterLines

Scatter with Straight Lines xlXYScatterLinesNoMarkers

High-Low-Close xlStockHLC

Open-High-Low-Close xlStockOHLC

Volume-High-Low-Close xlStockVHLC

Volume-Open-High-Low-Close xlStockVOHLC

3-D Surface xlSurface

Wireframe 3-D Surface xlSurfaceWireframe

Contour xlSurfaceTopView

Wireframe Contour xlSurfaceTopViewWireframe

Doughnut xlDoughnut

Exploded Doughnut xlDoughnutExploded

Bubble xlBubble

Bubble with a 3-D Effect xlBubble3DEffect

Radar xlRadar

Radar with Markers xlRadarMarkers

Filled Radar xlRadarFilled

Specifying a Template Chart Type
Excel 2010 allows you to create a custom chart template with all your preferred settings

such as colors and fonts. This technique is a great way to save time when you are creating a

chart with a lot of custom formatting.

A VBA macro can make use of a custom chart template, provided you plan to distribute the

custom chart template to each person who will run your macro.

Table 11.1 Continued

211Recording Commands from the Layout or Design Tabs

In Excel 2010, you save custom chart types as .crtx files and store them in the %appdata%\

Microsoft\Templates\Charts\ folder.

To apply a custom chart type, you use the following:

ActiveChart.ApplyChartTemplate “MyChart.crtx”

If the chart template does not exist, VBA returns an error. If you would like Excel to con-

tinue without displaying a debug error, you can instruct the error handler to resume with

the next line. After applying the chart template, go back to the default state of the error

handler so that you will see any errors. Here’s how you do this:

On Error Resume Next
ActiveChart.ApplyChartTemplate (“MyChart.crtx”)
On Error GoTo 0 ‘ that final character is a zero

Changing a Chart’s Layout or Style
Two galleries—the Chart Layout gallery and the Styles gallery—make up the bulk of the

Design tab.

The Chart Layout gallery offers from 4 to 12 combinations of chart elements. These

combinations are different for various chart types. When you look at the gallery shown in

Figure 11.2, the ToolTips for the layouts show that the layouts are named imaginatively as

Layout 1 through Layout 11.

Layout 1

Layout 4

Layout 11

Layout 3

Figure 11.2
The built-in layouts are
numbered 1 through 11.
For other chart types, you
might have from 4 to 12
layouts.

To apply one of the built-in layouts in a macro, you have to use the ApplyLayout method

with a number from 1 through 12 to correspond to the built-in layouts. The following code

applies Layout 1 to the active chart:

ActiveChart.ApplyLayout 1

Chapter 11 Creating Charts212

Therefore, to use a built-in layout effectively, you must have actually built a chart by hand

and found a layout that you like.

As shown in Figure 11.3, the Styles gallery contains 48 styles. These styles are also num-

bered sequentially, with Styles 1 through 8 in Row 1, Styles 9 through 16 in Row 2, and so

on. These styles follow a bit of a pattern:

Whereas line charts offer 12 built-in layouts, other types such as radar charts offer as few as four built-

in layouts. If you attempt to specify a layout number that is larger than the layouts available for the

current chart type, Excel returns a runtime error 5. Unless you just created the active chart in the same

macro, there is always the possibility that the person running the macro changed your line charts to

radar charts, so include some error handling before you use the ApplyLayout command.

C A U T I O N

Figure 11.3
The built-in styles are
numbered 1 through 48.

 ■ Styles 1, 9, 17, 25, 33, and 41 (that is, the styles in Column 1) are monochrome.

 ■ Styles 2, 10, 18, 26, 34, and 42 (that is, the styles in Column 2) use different colors for

each point.

■ All the other styles use hues of a particular theme color.

■ Styles 1 through 8 are simple styles.

■ Styles 17 through 24 use moderate effects.

■ Styles 33 through 40 have intense effects.

■ Styles 41 through 48 appear on a dark background.

If you are going to mix styles in a single workbook, consider staying within a single row or a single

column of the gallery.

T
IP

213Using SetElement to Emulate Changes on the Layout Tab

To apply a style to a chart, you use the ChartStyle property, assigning it a value from 1 to

48:

ActiveChart.ChartStyle = 1

The ChartStyle property changes the colors in the chart. However, a number of format-

ting changes from the Format tab are not overwritten when you change the ChartStyle

property. For example, suppose that you had applied glow or a clear glass bezel to a chart.

Running the preceding code will not clear that formatting.

To clear any previous formatting, you use the ClearToMatchStyle method:

ActiveChart.ChartStyle = 1
ActiveChart.ClearToMatchStyle

Using SetElement to Emulate Changes on the Layout Tab
The Layout tab contains a number of built-in settings. Figure 11.4 shows a few of the built-

in menu items for the Legend tab. There are similar menus for each of the icons in the

figure.

If you use a built-in menu item to change the titles, legend, labels, axes, gridlines, or back-

ground, it is probably handled in code that uses the SetElement method that is available in

Excel 2010.

SetElement does not work with the More choices at the bottom of each menu. It also does not work

with the 3-D Rotation button. Other than that, you can use SetElement to change everything in the

Labels, Axes, Background, and Analysis groups.

T
IP

Figure 11.4
There are built-in menus
similar to this one
for each icon. If your
choice is in the menu,
the VBA code uses the
SetElement method.

Chapter 11 Creating Charts214

The macro recorder always works for the built-in settings on the Layout tab. If you do not

feel like looking up the proper constant in this book, you can always quickly record a macro.

The SetElement method is followed by a constant that specifies which menu item to select.

For example, if you want to choose Show Legend at Left, you can use this code:

ActiveChart.SetElement msoElementLegendLeft

Table 11.2 shows all the available constants that you can use with the SetElement method.

These constants are in roughly the same order as they appear on the Layout tab.

Table 11.2 Constants Available with SetElement

Layout Tab Chart Element Constant Icon

Chart Title msoElementChartTitleNone

Chart Title msoElementChartTitleCenteredOverlay

Chart Title msoElementChartTitleAboveChart

Axis Titles msoElementPrimaryCategoryAxisTitleNone

Axis Titles msoElementPrimaryCategoryAxisTitleBelowAxis

Axis Titles msoElementPrimaryCategoryAxisTitleAdjacentToAxis

Axis Titles msoElementPrimaryCategoryAxisTitleHorizontal

Axis Titles msoEIementPrimaryCategoryAxisTitleVertical

Axis Titles msoElementPrimaryCategoryAxisTitleRotated

Axis Titles msoElementSecondaryCategoryAxisTitleAdjacentToAxis

Axis Titles msoElementSecondaryCategoryAxisTitleBelowAxis

Axis Titles msoElementSecondaryCategoryAxisTitleHorizontal

Axis Titles msoElementSecondaryCategoryAxisTitleNone

Axis Titles msoElementSecondaryCategoryAxisTitleRotated

Axis Titles msoElementSecondaryCategoryAxisTitleVertical

Axis Titles msoElementPrimaryValueAxisTitleAdjacentToAxis

Axis Titles msoElementPrimaryValueAxisTitleBelowAxis

Axis Titles msoElementPrimaryValueAxisTitleHorizontal

Axis Titles msoElementPrimaryValueAxisTitleNone

Axis Titles msoElementPrimaryValueAxisTitleRotated

Axis Titles msoElementPrimaryValueAxisTitleVertical

Axis Titles msoElementSecondaryValueAxisTitleBelowAxis

Axis Titles msoElementSecondaryValueAxisTitleHorizontal

Axis Titles msoElementSecondaryValueAxisTitleNone

Axis Titles msoElementSecondaryValueAxisTitleRotated

215Using SetElement to Emulate Changes on the Layout Tab

Layout Tab Chart Element Constant Icon

Axis Titles msoElementSecondaryValueAxisTitleVertical

Axis Titles msoElementSeriesAxisTitleHorizontal

Axis Titles msoElementSeriesAxisTitleNone

Axis Titles msoElementSeriesAxisTitleRotated

Axis Titles msoElementSeriesAxisTitleVertical

Axis Titles msoElementSecondaryValueAxisTitleAdjacentToAxis

Legend msoElementLegendNone

Legend msoElementLegendRight

Legend msoElementLegendTop

Legend msoElementLegendLeft

Legend msoElementLegendBottom

Legend msoElementLegendRightOverlay

Legend msoElementLegendLeftOverlay

Data Labels msoElementDataLabelCenter

Data Labels msoElementDataLabelInsideEnd

Data Labels msoElementDataLabelNone

Data Labels msoElementDataLabelInsideBase

Data Labels msoElementDataLabelOutSideEnd

Data Labels msoElementDataLabelTop

Data Labels msoElementDataLabelBottom

Data Labels msoElementDataLabelRight

Data Labels msoElementDataLabelLeft

Data Labels msoElementDataLabelShow

Data Labels msoElementDataLabelBestFit

Data Table msoElementDataTableNone

Data Table msoElementDataTableShow

Data Table msoElementDataTableWithLegendKeys

Axis msoElementPrimaryCategoryAxisNone

Axis msoElementPrimaryCategoryAxisShow

Axis msoElementPrimaryCategoryAxisWithoutLabels

Axis msoElementPrimaryCategoryAxisReverse

Axis msoElementPrimaryCategoryAxisThousands

Axis msoElementPrimaryCategoryAxisMillions

Axis msoElementPrimaryCategoryAxisBillions

Chapter 11 Creating Charts216

Layout Tab Chart Element Constant Icon

Axis msoElementPrimaryCategoryAxisLogScale

Axis msoElementSecondaryCategoryAxisNone

Axis msoElementSecondaryCategoryAxisShow

Axis msoElementSecondaryCategoryAxisWithoutLabels

Axis msoElementSecondaryCategoryAxisReverse

Axis msoElementSecondaryCategoryAxisThousands

Axis msoElementSecondaryCategoryAxisMillions

Axis msoElementSecondaryCategoryAxisBillions

Axis msoElementSecondaryCategoryAxisLogScaIe

Axis msoElementPrimaryValueAxisNone

Axis msoElementPrimaryValueAxisShow

Axis msoElementPrimaryValueAxisThousands

Axis msoElementPrimaryValueAxisMillions

Axis msoElementPrimaryValueAxisBillions

Axis msoElementPrimaryValueAxisLogScale

Axis msoElementSecondaryValueAxisNone

Axis msoElementSecondaryValueAxisShow

Axis msoElementSecondarWalueAxisThousands

Axis msoElementSecondaryValueAxisMillions

Axis msoElementSecondaryValueAxisBillions

Axis msoElementSecondaryValueAxisLogScale

Axis msoElementSeriesAxisNone

Axis msoElementSeriesAxisShow

Axis msoElementSeriesAxisReverse

Axis msoElementSeriesAxisWithoutLabeling

GridLines msoElementPrimaryCategoryGridLinesNone

GridLines msoElementPrimaryCategoryGridLinesMajor

GridLines msoElementPrimaryCategoryGridLinesMinor

GridLines msoElementPrimaryCategoryGridLinesMinorMajor

GridLines msoElementSecondaryCategoryGridLinesNone

GridLines msoElementSecondaryCategoryGridLinesMajor

GridLines msoElementSecondaryCategoryGridLinesMinor

GridLines msoElementSecondaryCategoryGridLinesMinorMajor

Table 11.2 Continued

217Using SetElement to Emulate Changes on the Layout Tab

Layout Tab Chart Element Constant Icon

GridLines msoElementPrimaryValueGridLinesNone

GridLines msoElementPrimaryValueGridLinesMajor

GridLines msoElementPrimaryValueGridLinesMinor

GridLines msoElementPrimaryValueGridLinesMinorMajor

GridLines msoElementSecondaryValueGridLinesNone

GridLines msoElementSecondaryValueGridLinesMajor

GridLines msoElementSecondaryValueGridLinesMinor

GridLines msoElementSecondaryValueGridLinesMinorMajor

GridLines msoElementSeriesAxisGridLinesNone

GridLines msoElementSeriesAxisGridLinesMajor

GridLines msoElementSeriesAxisGridLinesMinor

GridLines msoElementSeriesAxisGridLinesMinorMajor

Plot Area msoElementPlotAreaNone

Plot Area msoElementPlotAreaShow

Chart Wall msoElementChartWallNone

Chart Wall msoElementChartWallShow

Chart Floor msoElementChartFloorNone

Chart Floor msoElementChartFloorShow

Trendline msoElementTrendlineNone

Trendline msoElementTrendlineAddLinear

Trendline msoElementTrendlineAddExponential

Trendline msoElementTrendlineAddLinearForecast

Trendline msoElementTrendlineAddTwoPeriodMovingAverage

Lines msoElementLineNone

Lines msoElementLineDropLine

Lines msoElementLineHiLoLine

Lines msoElementLineDropHiLoLine

Lines msoElementLineSeriesLine

Up/Down Bars msoElementUpDownBarsNone

Up/Down Bars msoElementUpDownBarsShow

Error Bar msoElementErrorBarNone

Error Bar msoElementErrorBarStandardError

Error Bar msoElementErrorBarPercentage

Error Bar msoElementErrorBarStandardDeviation

Chapter 11 Creating Charts218

Changing a Chart Title Using VBA
The Layout tab’s built-in menus enable you to add a title above a chart, but they do not

enable you to change the characters in a chart title or axis title.

In the Excel interface, you can double-click the chart title text and type a new title to

change the title.

To specify a chart title in VBA, use this code:

ActiveChart.ChartTitle.Caption = “My Chart”

Similarly, you can specify the axis titles by using the Caption property. The following code

changes the axis title along the category axis:

ActiveChart.Axes(xlCategory, xlPrimary).AxisTitle.Caption = “Months”

Emulating Changes on the Format Tab
The Format tab offers icons for changing colors and effects for individual chart elements.

While many people call the Shadow, Glow, Bevel, and Material settings “chart junk,” there

are ways in VBA to apply these formats.

Using the Format Method to Access Formatting Options
Excel 2010 includes an object called the ChartFormat object that contains the settings for

Fill, Glow, Line, PictureFormat, Shadow, SoftEdge, TextFrame2, and ThreeD. You can access

the ChartFormat object by using the Format method on many chart elements. Table 11.3

lists a sampling of chart elements that can be formatted using the Format method.

Table 11.3 Chart Elements to Which Formatting Applies

Chart Element VBA to Refer to This Chart

Chart Title ChartTitle

Axis Title - Category Axes(xlCategory, xlPrimary).AxisTitle

Axis Title - Value Axes(xlValue, xlPrimary).AxisTitle

Legend Legend

Data Labels for Series 1 SeriesCollection(1).DataLabels

Data Labels for Point 2 SeriesCollection(1).DataLabels(2) or
SeriesCollection(1).Points(2).DataLabel

If you attempt to format an element that is not present, Excel will return a –2147467259 Method

Failed error.

C A U T I O N

219Emulating Changes on the Format Tab

Chart Element VBA to Refer to This Chart

Data Table DataTable

Axes – Horizontal Axes(xlCategory, xlPrimary)

Axes – Vertical Axes(xlValue, xlPrimary)

Axis – Series (Surface Charts Only) Axes(xlSeries, xlPrimary)

Major Gridlines Axes(xlValue, xlPrimary).MajorGridlines

Minor Gridlines Axes(xlValue, xlPrimary).MinorGridlines

Plot Area PlotArea

Chart Area ChartArea

Chart Wall Walls

Chart Back Wall BackWall

Chart Side Wall SideWall

Chart Floor Floor

Trendline for Series 1 SeriesCollection(1).TrendLines(1)

Droplines ChartGroups(1).DropLines

Up/Down Bars ChartGroups(1).UpBars

Error Bars SeriesCollection(1).ErrorBars

Series(1) SeriesCollection(1)

Series(1) DataPoint SeriesCollection(1).Points(3)

The Format method is the gateway to settings for Fill, Glow, and so on. Each of those

objects has different options. The following sections provide examples of how to set up

each type of format.

Changing an Object’s Fill

As shown in Figure 11.5, the Shape Fill drop-down on the Format tab enables you to

choose a single color, a gradient, a picture, or a texture for the fill.

To apply a specific color, you can use the RGB (red, green, blue) setting. To create a color,

you specify a value from 0 to 255 for levels of red, green, and blue. The following code

applies a simple blue fill:

Dim cht As Chart
Dim upb As UpBars
Set cht = ActiveChart
Set upb = cht.ChartGroups(1).UpBars
upb.Format.Fill.ForeColor.RGB = RGB(0, 0, 255)

If you would like an object to pick up the color from a specific theme accent color, you use

the ObjectThemeColor property. The following code changes the bar color of the first series

Chapter 11 Creating Charts220

to accent color 6, which is an orange color in the Office theme. However, this might be

another color if the workbook is using a different theme.

Sub ApplyThemeColor()
 Dim cht As Chart
 Dim ser As Series
 Set cht = ActiveChart
 Set ser = cht.SeriesCollection(1)
 ser.Format.Fill.ForeColor.ObjectThemeColor = msoThemeColorAccent6
End Sub

To apply a built-in texture, you use the PresetTextured method. The following code applies

a green marble texture to the second series. However, you can apply any of the 20 different

textures:

Sub ApplyTexture()
 Dim cht As Chart
 Dim ser As Series
 Set cht = ActiveChart
 Set ser = cht.SeriesCollection(2)
 ser.Format.Fill.PresetTextured msoTextureGreenMarble
End Sub

Figure 11.5
Fill options include a
solid color, a gradient, a
texture, or a picture.

When you type PresetTextured followed by a space, the VB Editor offers a complete list of pos-

sible texture values.

T
IP

221Emulating Changes on the Format Tab

To fill the bars of a data series with a picture, you use the UserPicture method and specify

the path and filename of an image on the computer, as in the following example:

Sub FormatWithPicture()
 Dim cht As Chart
 Dim ser As Series
 Set cht = ActiveChart
 Set ser = cht.SeriesCollection(1)
 MyPic = “C:\PodCastTitle1.jpg”
 ser.Format.Fill.UserPicture MyPic
End Sub

Microsoft removed patterns as fills from Excel 2007. However, this method was restored

in Excel 2010 because of the outcry from customers who used patterns to differentiate col-

umns printed on monochrome printers.

In Excel 2010, you can apply a pattern using the .Patterned method. Patterns have a type

such as msoPatternPlain, as well as a foreground and background color. The following code

creates dark red vertical lines on a white background:

Sub FormatWithPicture()
 Dim cht As Chart
 Dim ser As Series
 Set cht = ActiveChart
 Set ser = cht.SeriesCollection(1)
 With ser.Format.Fill
 .Patterned msoPatternDarkVertical
 .BackColor.RGB = RGB(255,255,255)
 .ForeColor.RGB = RGB(255,0,0)
 End With
End Sub

Code that uses patterns will work in every version of Excel except Excel 2007. Therefore, do not use this

code if you will be sharing the macro with coworkers who use Excel 2007.

C A U T I O N

Gradients are more difficult to specify than fills. Excel 2010 provides three methods that

help you set up the common gradients. The OneColorGradient and TwoColorGradient meth-

ods require that you specify a gradient direction such as msoGradientFromCorner. You can

then specify one of four styles, numbered 1 through 4, depending on whether you want the

gradient to start at the top left, top right, bottom left, or bottom right. After using a gradi-

ent method, you need to specify the ForeColor and the BackColor settings for the object.

The following macro sets up a two-color gradient using two theme colors:

Sub TwoColorGradient()
 Dim cht As Chart
 Dim ser As Series
 Set cht = ActiveChart
 Set ser = cht.SeriesCollection(1)

Chapter 11 Creating Charts222

 ser.Format.Fill.TwoColorGradient msoGradientFromCorner, 3
 ser.Format.Fill.ForeColor.ObjectThemeColor = msoThemeColorAccent6
 ser.Format.Fill.BackColor.ObjectThemeColor = msoThemeColorAccent2
End Sub

When using the OneColorGradient method, you specify a direction, a style (1 through 4),

and a darkness value between 0 and 1 (0 for darker gradients or 1 for lighter gradients).

When using the PresetGradient method, you specify a direction, a style (1 through 4), and

the type of gradient such as msoGradientBrass, msoGradientLateSunset, or msoGradien-

tRainbow. Again, as you are typing this code in the VB Editor, the AutoComplete tool pro-

vides a complete list of the available preset gradient types.

Formatting Line Settings

The LineFormat object formats either a line or the border around an object. You can change

numerous properties for a line, such as the color, arrows, dash style, and so on.

The following macro formats the trendline for the first series in a chart:

Sub FormatLineOrBorders()
 Dim cht As Chart
 Set cht = ActiveChart
 With cht.SeriesCollection(1).Trendlines(1).Format.Line
 .DashStyle = msoLineLongDashDotDot
 .ForeColor.RGB = RGB(50, 0, 128)
 .BeginArrowheadLength = msoArrowheadShort
 .BeginArrowheadStyle = msoArrowheadOval
 .BeginArrowheadWidth = msoArrowheadNarrow
 .EndArrowheadLength = msoArrowheadLong
 .EndArrowheadStyle = msoArrowheadTriangle
 .EndArrowheadWidth = msoArrowheadWide
 End With
End Sub

When you are formatting a border, the arrow settings are not relevant, so the code is

shorter than the code for formatting a line. The following macro formats the border around

a chart:

Sub FormatBorder()
 Dim cht As Chart
 Set cht = ActiveChart
 With cht.ChartArea.Format.Line
 .DashStyle = msoLineLongDashDotDot
 .ForeColor.RGB = RGB(50, 0, 128)
 End With
End Sub

Formatting Glow Settings

To create a glow, you have to specify a color and a radius. The radius value can be from 1 to

20. A radius of 1 is barely visible, whereas a radius of 20 is often too thick.

223Emulating Changes on the Format Tab

The following macro adds a line around the title and adds a glow around that line:

Sub AddGlowToTitle()
 Dim cht As Chart
 Set cht = ActiveChart
 cht.ChartTitle.Format.Line.ForeColor.RGB = RGB(255, 255, 255)
 cht.ChartTitle.Format.Line.DashStyle = msoLineSolid
 cht.ChartTitle.Format.Glow.Color.ObjectThemeColor = msoThemeColorAccent6
 cht.ChartTitle.Format.Glow.Radius = 8
End Sub

Formatting Shadow Settings

A shadow is composed of a color, a transparency, and the number of points by which the

shadow should be offset from the object. If you increase the number of points, it appears

that the object is farther from the surface of the chart. The horizontal offset is known as

OffsetX, and the vertical offset is known as OffsetY.

The following macro adds a light blue shadow to the box surrounding a legend:

Sub FormatShadow()
 Dim cht As Chart
 Set cht = ActiveChart
 With cht.Legend.Format.Shadow
 .ForeColor.RGB = RGB(0, 0, 128)
 .OffsetX = 5
 .OffsetY = -3
 .Transparency = 0.5
 .Visible = True
 End With
End Sub

Formatting Reflection Settings

No chart elements can have reflections applied. The Reflection settings on the Format tab

are grayed-out continuously when a chart is selected. Similarly, the ChartFormat object does

not have a reflection object.

Formatting Soft Edges

There are six levels of soft edge settings. The settings feather the edges by 1, 2.5, 5, 10, 25,

or 50 points. The first setting is barely visible. The biggest settings are usually larger than

most of the chart elements you are likely to format.

Microsoft says that the following is the proper syntax for SoftEdge:

Chart.Seriess(1).Points(i).Format.SoftEdge.Type = msoSoftEdgeType1

A glow is applied to the shape outline. If you try to add a glow to an object where the outline is set to

None, you cannot see the glow.

N
O

T
E

Chapter 11 Creating Charts224

However, msoSoftEdgeType1 and words like it are really variables defined by Excel. To try a

cool trick, go to the VB Editor and open the Immediate window by pressing Ctrl+G. In the

Immediate window, type Print msoSoftEdgeType2 and press Enter. The Immediate window

tells you that using this word is equivalent to typing 2. Therefore, you can use either mso-

SoftEdgeType2 or the value 2.

If you use msoSoftEdgeType2, your code will be slightly easier to understand than if you use

simply 2. However, if you hope to format each point of a data series with a different format,

you might want to use a loop such as this one, in which case it is far easier to use just the

numbers 1 through 6 than msoSoftEdgeType1 through msoSoftEdgeType6, as shown in this

macro:

Sub FormatSoftEdgesWithLoop()
 Dim cht As Chart
 Dim ser As Series
 Set cht = ActiveChart
 Set ser = cht.SeriesCollection(1)
 For i = 1 To 6
 ser.Points(i).Format.SoftEdge.Type = i
 Next i
End Sub

It is a bit strange that the soft edges are defined as a fixed number of points. In a chart that is sized to

fit an entire sheet of paper, a 10-point soft edge might work fine. However, if you resize the chart so

that you can fit six charts on a page, a 10-point soft edge applied to all sides of a column might make

the column completely disappear.

C A U T I O N

Formatting 3-D Rotation Settings

The 3-D settings handle three different menus on the Format tab. In the Shape Effects

drop-down, settings under Preset, Bevel, and 3-D are all actually handled by the ThreeD

object in the ChartFormat object. This section discusses settings that affect the 3-D rota-

tion. The next section discusses settings that affect the bevel and 3-D format.

The methods and properties that can be set for the ThreeD object are very broad. In fact,

the 3-D settings in VBA include more preset options than do the menus on the Format tab.

Figure 11.6 shows the presets available in the 3-D Rotation fly-out menu.

To apply one of the 3-D rotation presets to a chart element, you use the SetPresetCamera

method, as shown here:

Sub Assign3DPreset()
 Dim cht As Chart
 Dim shp As Shape
 Set cht = ActiveChart
 Set shp = cht.Shapes(1)
 shp.ThreeD.SetPresetCamera msoCameraIsometricLeftDown
End Sub

225Emulating Changes on the Format Tab

11

Table 11.4 lists all the possible SetPresetCamera values.

Figure 11.6
Whereas the 3-D Rotation
menu offers 25 presets,
VBA offers 62 presets.

If the first column indicates that it is a bonus or an Excel 2003 style, you know the value is a preset that

is available in VBA. However, the value was not chosen by Microsoft to be included in the 3-D Rotation

fly-out menu. You can make some charts in Excel 2010 that no one else will be able to replicate using

the Excel interface.

T
IP

Table 11.4 3-D Preset Formats and Their VBA Constant Values

Menu Location Description VBA Value

Parallel group, row 1,
column 1

Isometric Left Down msoCameraIsometricLeftDown

Parallel group, row 1,
column 2

Isometric Right Up msoCameraIsometricRightUp

Parallel group, row 1,
column 3

Isometric Top Up msoCameraIsometricTopUp

Parallel group, row 1,
column 4

Isometric Bottom Down msoCameraIsometricBottomDown

Parallel group, row 2,
column 1

Isometric OffAxis1 Left msoCameraIsometricOffAxis1Left

Parallel group, row 2,
column 2

Isometric OffAxis1 Right msoCameraIsometricOffAxis1Right

Chapter 11 Creating Charts226

Menu Location Description VBA Value

Parallel group, row 2,
column 3

Isometric OffAxis1 Top msoCameraIsometricOffAxis1Top

Parallel group, row 2,
column 4

Isometric OffAxis2 Left msoCameraIsometricOffAxis2Left

Parallel group, row 3,
column 1

Isometric OffAxis2 Right msoCameraIsometricOffAxis2Right

Parallel group, row 3,
column 2

Isometric OffAxis2 Top msoCameraIsometricOffAxis2Top

Parallel group, bonus
selection

Isometric Bottom Up msoCameraIsometricBottomUp

Parallel group, bonus
selection

Isometric Left Up msoCameraIsometricLeftUp

Parallel group, bonus
selection

Isometric OffAxis3 Bottom msoCameraIsometricOffAxis3Bottom

Parallel group, bonus
selection

Isometric OffAxis3 Left msoCameraIsometricOffAxis3Left

Parallel group, bonus
selection

Isometric OffAxis3 Right msoCameraIsometricOffAxis3Right

Parallel group, bonus
selection

Isometric OffAxis4 Bottom msoCameraIsometricOffAxis4Bottom

Parallel group, bonus
selection

Isometric OffAxis4 Left msoCameraIsometricOffAxis4Left

Parallel group, bonus
selection

Isometric OffAxis4 Right msoCameraIsometricOffAxis4Right

Parallel group, bonus
selection

Isometric Right Down msoCameraIsometricRightDown

Parallel group, bonus
selection

Isometric Top Down msoCameraIsometricTopDown

Perspective group, row
1, column 1

Perspective Front msoCameraPerspectiveFront

Perspective group, row
1, column 2

Perspective Left msoCameraPerspectiveLeft

Perspective group, row
1, column 3

Perspective Right msoCameraPerspectiveRight

Perspective group, row
1, column 4

Perspective Below msoCameraPerspectiveBelow

Perspective group, row
2, column 1

Perspective Above msoCameraPerspectiveAbove

Perspective group, row
2, column 2

Perspective Relaxed
Moderately

msoCameraPerspectiveRelaxedModerately

Table 11.4 Continued

227Emulating Changes on the Format Tab

Menu Location Description VBA Value

Perspective group, row
2, column 3

Perspective Relaxed msoCameraPerspectiveRelaxed

Perspective group, row
2, column 4

Perspective Contrasting Left
Facing

msoCameraPerspectiveContrastingLeft-
Facing

Perspective group, row
3, column 1

Perspective Contrasting
Right Facing

msoCameraPerspectiveContrastingRight-
Facing

Perspective group, row
3, column 2

Perspective Heroic Extreme
Left Facing

msoCameraPerspectiveHeroicEx-
tremeLeftFacing

Perspective group, row
3, column 3

Perspective Heroic Extreme
Right Facing

msoCameraPerspectiveHeroicExtremeR-
ightFacing

Perspective group,
bonus selection

Perspective Above Left
Facing

msoCameraPerspectiveAboveLeftFacing

Perspective group,
bonus selection

Perspective Above Right
Facing

msoCameraPerspectiveAboveRightFacing

Perspective group,
bonus selection

Perspective Heroic Left
Facing

msoCameraPerspectiveHeroicLeftFacing

Perspective group,
bonus selection

Perspective Heroic Right
Facing

msoCameraPerspectiveHeroicRightFacing

Perspective group,
Excel 2003 styles

Legacy Perspective Bottom msoCameraLegacyPerspectiveBottom

Perspective group,
Excel 2003 styles

Legacy Perspective Lower
Left

msoCameraLegacyPerspectiveBottomLeft

Perspective group,
Excel 2003 styles

Legacy Perspective Lower
Right

msoCameraLegacyPerspectiveBottomRight

Perspective group,
Excel 2003 styles

Legacy Perspective Front msoCameraLegacyPerspectiveFront

Perspective group,
Excel 2003 styles

Legacy Perspective Left msoCameraLegacyPerspectiveLeft

Perspective group,
Excel 2003 styles

Legacy Perspective Right msoCameraLegacyPerspectiveRight

Perspective group,
Excel 2003 styles

Legacy Perspective Top msoCameraLegacyPerspectiveTop

Perspective group,
Excel 2003 styles

Legacy Perspective Upper
Left

msoCameraLegacyPerspectiveTopLeft

Perspective group,
Excel 2003 styles

Legacy Perspective Upper
Right

msoCameraLegacyPerspectiveTopRight

Oblique group, row 1,
column 1

Oblique Upper Left msoCameraObliqueTopLeft

Oblique group, row 1,
column 2

Oblique Upper Right msoCameraObliqueTopRight

Chapter 11 Creating Charts228

Menu Location Description VBA Value

Oblique group, row 1,
column 3

Oblique Lower Left msoCameraObliqueBottomLeft

Oblique group, row 1,
column 4

Oblique Lower Right msoCameraObliqueBottomRight

Oblique group, bonus
selection

Oblique Bottom msoCameraObliqueBottom

Oblique group, bonus
selection

Oblique Left msoCameraObliqueLeft

Oblique group, bonus
selection

Oblique Right msoCameraObliqueRight

Oblique group, bonus
selection

Oblique Top msoCameraObliqueTop

Oblique group, bonus
selection

Orthographic Front msoCameraOrthographicFront

Oblique group, Excel
2003 styles

Legacy Oblique Bottom msoCameraLegacyObliqueBottom

Oblique group, Excel
2003 styles

Legacy Oblique Lower Left msoCameraLegacyObliqueBottomLeft

Oblique group, Excel
2003 styles

Legacy Oblique Lower Right msoCameraLegacyObliqueBottomRight

Oblique group, Excel
2003 styles

Legacy Oblique Front msoCameraLegacyObliqueFront

Oblique group, Excel
2003 styles

Legacy Oblique Left msoCameraLegacyObliqueLeft

Oblique group, Excel
2003 styles

Legacy Oblique Right msoCameraLegacyObliqueRight

Oblique group, Excel
2003 styles

Legacy Oblique Top msoCameraLegacyObliqueTop

Oblique group, Excel
2003 styles

Legacy Oblique Upper Left msoCameraLegacyObliqueTopLeft

Oblique group, Excel
2003 styles

Legacy Oblique Upper Right msoCameraLegacyObliqueTopRight

If you prefer not to use the presets, you can explicitly control the rotation around the x-,

y-, or z-axis. You can use the following properties and methods to change the rotation of an

object:

 ■ RotationX—Returns or sets the rotation of the extruded shape around the x-axis, in

degrees. This can be a value from –90 through 90. A positive value indicates upward

rotation; a negative value indicates downward rotation.

Table 11.4 Continued

229Emulating Changes on the Format Tab

 ■ RotationY—Returns or sets the rotation of the extruded shape around the y-axis, in

degrees. This can be a value from –90 through 90. A positive value indicates rotation to

the left; a negative value indicates rotation to the right.

 ■ RotationZ—Returns or sets the rotation of the extruded shape around the z-axis, in

degrees. This can be a value from –90 through 90. A positive value indicates upward

rotation; a negative value indicates downward rotation.

 ■ IncrementRotationX—Changes the rotation of the specified shape around the x-axis by

the specified number of degrees. You specify an increment from –90 to 90. Negative

degrees tip the object down, and positive degrees tip the object up.

You can use the RotationX property to set the absolute rotation of the shape around the x-axis.

T
IP

 ■ IncrementRotationY—Changes the rotation of the specified shape around the y-axis

by the specified number of degrees. A positive value tilts the object left, and a negative

value tips the object right.

You can use the RotationY property to set the absolute rotation of the shape around the y-axis.

T
IP

 ■ IncrementRotationZ—Changes the rotation of the specified shape around the z-axis

by the specified number of degrees. A positive value tilts the object left, and a negative

value tips the object right.

You can use the RotationZ property to set the absolute rotation of the shape around the z-axis.

T
IP

 ■ IncrementRotationHorizontal—Changes the rotation of the specified shape horizon-

tally by the specified number of degrees. You specify an increment from –90 to 90 to

specify how much (in degrees) the rotation of the shape is to be changed horizontally.

A positive value moves the shape left; a negative value moves it right.

 ■ IncrementRotationVertical—Changes the rotation of the specified shape vertically by

the specified number of degrees. You specify an increment from –90 to 90 to specify

how much (in degrees) the rotation of the shape is to be changed horizontally. A posi-

tive value moves the shape left; a negative value moves it right.

 ■ ResetRotation—Resets the extrusion rotation around the x-axis and the y-axis to 0 so

that the front of the extrusion faces forward. This method does not reset the rotation

around the z-axis.

Chapter 11 Creating Charts230

Changing the Bevel and 3-D Format

There are 12 presets in the Bevel fly-out menu. These presets affect the bevel on the top

face of the object. In charts, you usually see the top face. However, there are some bizarre

rotations of a 3-D chart where you see the bottom face of charting elements.

The Format Shape dialog contains the same 12 presets as the Bevel fly-out but allows you

to apply the preset to the top or bottom face. You can also control the width and height of

the bevel. The VBA properties and methods correspond to the settings on the 3-D Format

category of the Format Shape dialog (see Figure 11.7).

You set the type of bevel by using the BevelTopType and BevelBottomType properties. You

can further modify the bevel type by setting the BevelTopInset value to set the width and

the BevelTopDepth value to set the height. The following macro adds a bevel to the columns

of Series 1:

Sub AssignBevel()
 Dim cht As Chart
 Dim ser As Series
 Set cht = ActiveChart
 Set ser = cht.SeriesCollection(1)
 ser.Format.ThreeD.Visible = True
 ser.Format.ThreeD.BevelTopType = msoBevelCircle
 ser.Format.ThreeD.BevelTopInset = 16
 ser.Format.ThreeD.BevelTopDepth = 6
End Sub

Figure 11.7
You can control the 3-D
Format settings such
as bevel, surface, and
lighting.

The 12 possible settings for the bevel type are shown in Table 11.5; these settings corre-

spond to the thumbnails in the fly-out menu. To turn off the bevel, you use msoBevelNone.

231Emulating Changes on the Format Tab

Table 11.5 Bevel Types

Location in Figure 11.17 Constant Value

Row 1, column 1 msoBevelCircle 3

Row 1, column 2 msoBevelRelaxedInset 2

Row 1, column 3 msoBevelCross 5

Row 1, column 4 msoBevelCoolSlant 9

Row 2, column 1 msoBevelAngle 6

Row 2, column 2 msoBevelSoftRound 7

Row 2, column 3 msoBevelConvex 8

Row 2, column 4 msoBevelSlope 4

Row 3, column 1 msoBevelDivot 10

Row 3, column 2 msoBevelRiblet 11

Row 3, column 3 msoBevelHardEdge 12

Row 3, column 4 msoBevelArtDeco 13

Usually, the accent color used in a bevel is based on the color used to fill the object.

However, if you would like control over the extrusion color, you should first specify that

the extrusion color type is custom and then specify either a theme accent color or an RGB

color. Here’s an example:

ser.Format.ThreeD.ExtrusionColorType = msoExtrusionColorCustom
‘ either use this:
ser.Format.ThreeD.ExtrusionColor.ObjectThemeColor = msoThemeColorAccent1
‘ or this:
ser.Format.ThreeD.ExtrusionColor.RGB = RGB(255, 0, 0)

You use the Depth property to control the amount of extrusion in the bevel, and you specify

the depth in points. Here’s an example:

ser.Format.ThreeD.Depth = 5

For the contour, you can specify either a color or a size of the contour or both. You can

specify the color as an RGB value or a theme color. You specify the size in points, using the

ContourWidth property. Here’s an example:

ser.Format.ThreeD.ContourColor.RGB = RGB(0, 255, 0)
ser.Format.ThreeD.ContourWidth = 10

The Surface drop-downs are controlled by the following properties:

■ PresetMaterial—Contains choices from the Material drop-down

■ PresetLighting—Contains choices from the Lighting drop-down

■ LightAngle—Controls the angle from which the light is shining on the object

Chapter 11 Creating Charts232

In addition, there are three legacy styles in the object model, which are not available in

the Format dialog box. In theory, the new Plastic2 material is better than the old Plastic

material. Table 11.6 shows the settings for each thumbnail.

Table 11.6 VBA Constants for Material Types

Type VBA Constant Value

Matte msoMaterialMatte2 5

Warm Matte msoMaterialWarmMatte 8

Plastic msoMaterialPlastic2 6

Metal msoMaterialMetal2 7

Dark Edge msoMaterialDarkEdge 11

Soft Edge msoMaterialSoftEdge 12

Flat msoMaterialFlat 14

Wire Frame msoMaterialWireFrame 4

Powder msoMaterialPowder 10

Translucent Powder msoMaterialTranslucentPowder 9

Clear msoMaterialClear 13

Bonus msoMaterialMatte 1

Bonus msoMaterialPlastic 2

Bonus msoMaterialMetal 3

Bonus msoMaterialSoftMetal 15

In legacy versions of Excel, the material property was limited to matte, metal, plastic, and

wire frame. Microsoft apparently was not happy with the old matte, metal, and plastic

settings. It left those values in place to support legacy charts but created the new Matte2,

Plastic2, and Metal2 settings. These settings are actually available in the dialog box. In

VBA, you are free to use either the old or the new settings.

The columns in Figure 11.8 compare the new and old settings. The final column is for the

SoftMetal setting that Microsoft left out of the Format dialog box. This was probably an

aesthetic decision instead of an “oh no; this setting crashes the computer” decision. You

should feel free to use msoMaterialSoftMetal to create a look that has a subtle difference

from charts others create using the settings in the Format dialog box.

The Material drop-down menu from the 3-D category of the Format dialog box offers 11 settings,

although it appears that Microsoft designed a 12th setting in the object model. It is not clear why

Microsoft does not offer the SoftMetal style in the dialog box, but you can use it in VBA.
N

O
T

E

233Emulating Changes on the Format Tab

The Lighting drop-down menu from the 3-D category of the Format dialog box offers 15

settings. The object model offers these 15 settings, plus 13 legacy settings from the Excel

2003 Lighting toolbar. Table 11.7 shows the settings for each of these thumbnails.

Figure 11.8
Comparison of some new
and old material presets.

Table 11.7 VBA Constants for Lighting Types

Type VBA Constant Value

Neutral Category

ThreePoint msoLightRigThreePoint 13

Balanced msoLightRigBalanced 14

Soft msoLightRigSoft 15

Harsh msoLightRigHarsh 16

Flood msoLightRigFlood 17

Contrasting msoLightRigContrasting 18

Warm Category

Morning msoLightRigMorning 19

Sunrise msoLightRigSunrise 20

Sunset msoLightRigSunset 21

Cool Category

Chilly msoLightRigChilly 22

Freezing msoLightRigFreezing 23

Chapter 11 Creating Charts234

Type VBA Constant Value

Special Category

Flat msoLightRigFlat 24

TwoPoint msoLightRigTwoPoint 25

Glow msoLightRigGlow 26

BrightRoom msoLightRigBrightRoom 27

Legacy Category

Flat 1 msoLightRigLegacyFlat1 1

Flat 2 msoLightRigLegacyFlat2 2

Flat 3 msoLightRigLegacyFlat3 3

Flat 4 msoLightRigLegacyFlat4 4

Harsh 1 msoLightRigLegacyHarsh1 9

Harsh 2 msoLightRigLegacyHarsh2 10

Harsh 3 msoLightRigLegacyHarsh3 11

Harsh 4 msoLightRigLegacyHarsh4 12

Normal 1 msoLightRigLegacyNormal1 5

Normal 2 msoLightRigLegacyNormal2 6

Normal 3 msoLightRigLegacyNormal3 7

Normal 4 msoLightRigLegacyNormal4 8

Mixed msoLightRigMixed –2

Creating Advanced Charts
In Charts & Graphs for Microsoft Excel 2010 (Que, ISBN 0789743124), I included some

amazing charts that do not look like they can possibly be created using Excel. Building

these charts usually involves adding a rogue data series that appears in the chart as an XY

series to complete some effect.

The process of creating these charts manually is very tedious, which ensures that most peo-

ple will never resort to creating such charts. However, if the process could be automated,

the creation of the charts starts to become feasible.

The next sections explain how to use VBA to automate the process of creating these rather

complex charts.

Table 11.7 Continued

235Creating Advanced Charts

Creating True Open-High-Low-Close Stock Charts
If you are a fan of stock charts in the Wall Street Journal or finance.yahoo.com, you will

recognize the chart type known as Open-High-Low-Close (OHLC) chart. Excel does not

offer such a chart. Its High-Low-Close (HLC) chart is missing the left-facing dash that

represents the opening for each period. You might think that HLC charts are close enough

to OHLC charts. However, one of my personal pet peeves is that the WSJ can create bet-

ter-looking charts than Excel can.

In Figure 11.9, you can see a true OHLC chart.

Figure 11.9
Excel’s built-in High-Low-
Close chart leaves out the
Open mark for each data
point.

In the Excel user interface, you will indicate that the Open series should have a custom

picture and then specify LeftDash.gif as the picture. In VBA code, you use the UserPicture

method, as shown here:

ActiveChart Cht.SeriesCollection(1).Fill.UserPicture “C:\leftdash.gif”

To create a true OHLC chart, follow these steps:

1. Create a line chart from four series; Open, High, Low, Close.

2. Change the line style to none for all four series.

3. Eliminate the marker for the High and Low series.

4. Add a High-Low line to the chart.

In Excel 2010, you can specify a custom picture that you can use as the marker in a chart. Given that

Excel has a right-facing dash but not a left-facing dash, you need to use Photoshop to create a left-

facing dash as a GIF file. This tiny graphic makes up for the fundamental flaw in Excel’s chart marker

selection.

N
O

T
E

http://www.mrexcel.com/getcode2010.html

Chapter 11 Creating Charts236

 5. Change the marker for Close to a right-facing dash, which is called a dot in VBA, with

a size of 9.

 6. Change the marker for Open to a custom picture and load LeftDash.gif as the fill for

the series.

The following code creates the top chart in Figure 11.9:

 ActiveSheet.Shapes.AddChart(xlLineMarkers).Select
 Set Cht = ActiveChart
 Cht.SetSourceData Source:=Range(“Sheet1!A1:E33”)
 ‘ Format the Open Series
 With Cht.SeriesCollection(1)
 .MarkerStyle = xlMarkerStylePicture
 .Fill.UserPicture (“C:\leftdash.gif”)
 .Border.LineStyle = xlNone
 .MarkerForegroundColorIndex = xlColorIndexNone
 End With
 ‘ Format High & Low Series
 With Cht.SeriesCollection(2)
 .MarkerStyle = xlMarkerStyleNone
 .Border.LineStyle = xlNone
 End With
 With Cht.SeriesCollection(3)
 .MarkerStyle = xlMarkerStyleNone
 .Border.LineStyle = xlNone
 End With
 ‘ Format the Close series
 Set Ser = Cht.SeriesCollection(4)
 With Ser
 .MarkerBackgroundColorIndex = 1
 .MarkerForegroundColorIndex = 1
 .MarkerStyle = xlDot
 .MarkerSize = 9
 .Border.LineStyle = xlNone
 End With
 ‘ Add High-Low Lines
 Cht.SetElement (msoElementLineHiLoLine)
 Cht.SetElement (msoElementLegendNone)

End Sub

Creating Bins for a Frequency Chart
Suppose that you have results from 3,000 scientific trials. There must be a good way to pro-

duce a chart of those results. However, if you just select the results and create a chart, you

will end up with chaos (see Figure 11.10).

Sub CreateOHCLChart()

 ‘ save the gif in the same folder as this workbook
 Dim Cht As Chart
 Dim Ser As Series

237Creating Advanced Charts

The trick to creating an effective frequency distribution is to define a series of categories,

or bins. A FREQUENCY array function counts the number of items from the 3,000 results that

fall within each bin.

The process of creating bins manually is rather tedious and requires knowledge of array

formulas. It is better to use a macro to perform all of the tedious calculations.

The macro in this section requires you to specify a bin size and a starting bin. If you expect

results in the 0 to 100 range, you might specify bins of 10 each, starting at 0. This would

create bins of 0–10, 11–20, 21–30, and so on. If you specify bin sizes of 15 with a starting

bin of 5, the macro will create bins of 5–20, 21–35, 36–50, and so on.

To use the following macro, your trial results should start in Row 2 and should be in the

rightmost column of a dataset. Three variables near the top of the macro define the starting

bin, the ending bin, and the bin size:

‘ Define Bins
BinSize = 10
FirstBin = 0
LastBin = 100

After that, the macro skips a column and then builds a range of starting bins. In Cell D4

in Figure 11.11, the 10 is used to tell Excel that you are looking for the number of values

larger than the 0 in D3, but equal to or less than the 10 in D4.

Although the bins extend from D3:D13, the FREQUENCY function entered in Column E needs

to include one extra cell, in case any results are larger than the last bin. This single formula

returns many results. Formulas that return more than one answer are called array formulas.
In the Excel user interface, you specify an array formula by holding down Ctrl+Shift while

pressing Enter to finish the formula. In Excel VBA, you need to use the FormulaArray prop-

erty. The following lines of the macro set up the array formula in Column E:

‘ Enter the Frequency Formula
Form = “=FREQUENCY(R2C” & FinalCol & “:R” & FinalRow & “C” & FinalCol & _
 “,R3C” & NextCol & “:R” & _
 LastRow & “C” & NextCol & “)”
Range(Cells(FirstRow, NextCol + 1), Cells(LastRow, NextCol + 1)). _
 FormulaArray = Form

Figure 11.10
Try to chart the results
from 3,000 trials and you
will have a jumbled mess.

Chapter 11 Creating Charts238

It is not evident to the reader if the bin indicated in Column D is the upper or lower limit.

The macro builds readable labels in Column G and then copies the frequency results over

to Column H.

After the macro builds a simple column chart, the following line eliminates the gap between

columns, creating the traditional histogram view of the data:

Cht.ChartGroups(1).GapWidth = 0

The macro to create the chart in Figure 11.11 follows:

Sub CreateFrequencyChart()
 ‘ Find the last column
 FinalCol = Cells(1, Columns.Count).End(xlToLeft).Column
 ‘ Find the FinalRow
 FinalRow = Cells(Rows.Count, FinalCol).End(xlUp).Row

 ‘ Define Bins
 BinSize = 10
 FirstBin = 0
 LastBin = 100

 ‘The bins will go in row 3, two columns after FinalCol
 NextCol = FinalCol + 2
 FirstRow = 3
 NextRow = FirstRow - 1

 ‘ Set up the bins for the Frequency function
 For i = FirstBin To LastBin Step BinSize
 NextRow = NextRow + 1
 Cells(NextRow, NextCol).Value = i

Figure 11.11
The macro summarizes
the results into bins and
provides a meaningful
chart of the data.

239Creating Advanced Charts

 Next i

 ‘ The Frequency function has to be one row larger than the bins
 LastRow = NextRow + 1

 ‘ Enter the Frequency Formula
 Form = “=FREQUENCY(R2C” & FinalCol & “:R” & FinalRow & “C” & FinalCol & _
 “,R3C” & NextCol & “:R” & _
 LastRow & “C” & NextCol & “)”
 Range(Cells(FirstRow, NextCol + 1), Cells(LastRow, NextCol + 1)). _
 FormulaArray = Form

 ‘ Build a range suitable a chart source data
 LabelCol = NextCol + 3
 Form = “=R[-1]C[-3]&””-””&RC[-3]”
 Range(Cells(4, LabelCol), Cells(LastRow - 1, LabelCol)).FormulaR1C1 = _
 Form
 ‘ Enter the > Last formula
 Cells(LastRow, LabelCol).FormulaR1C1 = “=””>””&R[-1]C[-3]”
 ‘ Enter the < first formula
 Cells(3, LabelCol).FormulaR1C1 = “=””<””&RC[-3]”

 ‘ Enter the formula to copy the frequency results
 Range(Cells(3, LabelCol + 1), Cells(LastRow, LabelCol + 1)).FormulaR1C1 = _
 “=RC[-3]”
 ‘ Add a heading
 Cells(2, LabelCol + 1).Value = “Frequency”

 ‘ Create a column chart
 Dim Cht As Chart
 ActiveSheet.Shapes.AddChart(xlColumnClustered).Select
 Set Cht = ActiveChart
 Cht.SetSourceData Source:=Range(Cells(2, LabelCol), _
 Cells(LastRow, LabelCol + 1))
 Cht.SetElement (msoElementLegendNone)
 Cht.ChartGroups(1).GapWidth = 0
 Cht.SetElement (msoElementDataLabelOutSideEnd)

End Sub

Creating a Stacked Area Chart
The stacked area chart shown in Figure 11.12 is incredibly difficult to create in the Excel

user interface. Although the chart appears to contain four independent charts, this chart

actually contains nine series:

 ■ The first series contains the values for the East region.

 ■ The second series contains 1,000 minus the East values. This series is formatted with a

transparent fill.

 ■ Series 3, 5, and 7 contain values for Central, Northwest, and Southwest.

 ■ Series 4, 6, and 8 contain 1,000 minus the preceding series.

Chapter 11 Creating Charts240

 ■ The final series is a XY series used to add labels for the left axis. There is one point for

each gridline. The markers are positioned at an X position of 0. Custom data labels are

added next to invisible markers to force the labels along the axis to start again at 0 for

each region.

Figure 11.12
A single chart appears to
hold four different charts.

To use the macro provided here, your data should begin in Column A and Row 1. The

macro adds new columns to the right of the data and new rows below the data, so the rest

of the worksheet should be blank.

Two variables at the top of the macro define the height of each chart. In the current exam-

ple, leaving a height of 1000 allows the sales for each region to fit comfortably. The LabSize

value should indicate how frequently labels should appear along the left axis. This number

must be evenly divisible into the chart height. In this example, values of 500, 250, 200, 125,

or 100 would work:

‘ Define the height of each area chart
ChtHeight = 1000
‘ Define Tick Mark Size
‘ ChtHeight should be an even multiple of LabSize
LabSize = 200

The macro builds a copy of the data to the right of the original data. New “dummy” series

are added to the right of each region to calculate 1,000 minus the data point. In Figure

11.13, this series is shown in G1:O5.

The macro then creates a stacked area chart for the first eight series. The legend for this

chart indicates values of East, dummy, Central, dummy, and so on. To delete every other

legend entry, use this code:

‘ Fill the dummy series with no fill
For i = FinalSeriesCount To 2 Step -2
 Cht.SeriesCollection(i).Interior.ColorIndex = xlNone
Next i

241Creating Advanced Charts

Similarly, the fill for each even numbered series in the chart needs to be set to transparent:

‘ Fill the dummy series with no fill
For i = FinalSeriesCount To 2 Step -2
 Cht.SeriesCollection(i).Interior.ColorIndex = xlNone
Next i

The trickiest part of the process is adding a new final series to the chart. This series will

have far more data points than the other series. Range B8:C28 contains the X and Y values

for the new series. You will see that each point has an X value of 0 to ensure that it appears

along the left side of the plot area. The Y values increase steadily by the value indicated in

the LabSize variable. In Column A next to the X and Y points are the actual labels that will

be plotted next to each marker. These labels give the illusion that the chart starts over with

a value of 0 for each region.

The process of adding the new series is actually much easier in VBA than in the Excel user

interface. The following code identifies each component of the series and specifies that it

should be plotted as an XY chart:

‘ Add the new series to the chart
Set Ser = Cht.SeriesCollection.NewSeries
With Ser
 .Name = “Y”
 .Values = Range(Cells(AxisRow + 1, 3), Cells(NewFinal, 3))
 .XValues = Range(Cells(AxisRow + 1, 2), Cells(NewFinal, 2))
 .ChartType = xlXYScatter
 .MarkerStyle = xlMarkerStyleNone
End With

Finally, code applies a data label from Column A to each point in the final series:

‘ Label each point in the series
‘ This code actually adds fake labels along left axis
For i = 1 To TickMarkCount
 Ser.Points(i).HasDataLabel = True
 Ser.Points(i).DataLabel.Text = Cells(AxisRow + i, 1).Value
Next i

Figure 11.13
Extra data to the right
and below the original
data are created by the
macro to create the chart.

Chapter 11 Creating Charts242

The complete code to create the stacked chart in Figure 11.13 is shown here:

Sub CreatedStackedChart()
 Dim Cht As Chart
 Dim Ser As Series
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
 FinalCol = Cells(1, Columns.Count).End(xlToLeft).Column
 OrigSeriesCount = FinalCol - 1
 FinalSeriesCount = OrigSeriesCount * 2

 ‘ Define the height of each area chart
 ChtHeight = 1000
 ‘ Define Tick Mark Size
 ‘ ChtHeight should be an even multiple of LabSize
 LabSize = 200

 ‘ Make a copy of the data
 NextCol = FinalCol + 2
 Cells(1, 1).Resize(FinalRow, FinalCol).Copy _
 Destination:=Cells(1, NextCol)
 FinalCol = Cells(1, Columns.Count).End(xlToLeft).Column

 ‘ Add in new columns to serve as dummy series
 MyFormula = “=” & ChtHeight & “-RC[-1]”
 For i = FinalCol + 1 To NextCol + 2 Step -1
 Cells(1, i).EntireColumn.Insert
 Cells(1, i).Value = “dummy”
 Cells(2, i).Resize(FinalRow - 1, 1).FormulaR1C1 = MyFormula
 Next i

 ‘ Figure out the new Final Column
 FinalCol = Cells(1, Columns.Count).End(xlToLeft).Column

 ‘ Build the Chart
 ActiveSheet.Shapes.AddChart(xlAreaStacked).Select
 Set Cht = ActiveChart
 Cht.SetSourceData Source:=Range(Cells(1, NextCol), Cells(FinalRow, _
 FinalCol))
 Cht.PlotBy = xlColumns

 ‘ Clear out the even number series from the Legend
 For i = FinalSeriesCount - 1 To 1 Step -2
 Cht.Legend.LegendEntries(i).Delete
 Next i

 ‘ Set the axis Maximum Scale & Gridlines
 TopScale = OrigSeriesCount * ChtHeight
 With Cht.Axes(xlValue)
 .MaximumScale = TopScale
 .MinorUnit = LabSize
 .MajorUnit = ChtHeight
 End With
 Cht.SetElement (msoElementPrimaryValueGridLinesMinorMajor)

 ‘ Fill the dummy series with no fill
 For i = FinalSeriesCount To 2 Step -2

243Creating Advanced Charts

 Cht.SeriesCollection(i).Interior.ColorIndex = xlNone
 Next i

 ‘ Hide the original axis labels
 Cht.Axes(xlValue).TickLabelPosition = xlNone

 ‘ Build a new range to hold a rogue XY series that will
 ‘ be used to create left axis labels
 AxisRow = FinalRow + 2
 Cells(AxisRow, 1).Resize(1, 3).Value = Array(“Label”, “X”, “Y”)
 TickMarkCount = OrigSeriesCount * (ChtHeight / LabSize) + 1
 ‘ Column B contains the X values. These are all zero
 Cells(AxisRow + 1, 2).Resize(TickMarkCount, 1).Value = 0
 ‘ Column C contains the Y values.
 Cells(AxisRow + 1, 3).Resize(TickMarkCount, 1).FormulaR1C1 = _
 “=R[-1]C+” & LabSize
 Cells(AxisRow + 1, 3).Value = 0
 ‘ Column A contains the labels to be used for each point
 Cells(AxisRow + 1, 1).Value = 0
 Cells(AxisRow + 2, 1).Resize(TickMarkCount - 1, 1).FormulaR1C1 = _
 “=IF(R[-1]C+” & LabSize & “>=” & ChtHeight & “,0,R[-1]C+” & LabSize _
 & “)”
 NewFinal = Cells(Rows.Count, 1).End(xlUp).Row
 Cells(NewFinal, 1).Value = ChtHeight

 ‘ Add the new series to the chart
 Set Ser = Cht.SeriesCollection.NewSeries
 With Ser
 .Name = “Y”
 .Values = Range(Cells(AxisRow + 1, 3), Cells(NewFinal, 3))
 .XValues = Range(Cells(AxisRow + 1, 2), Cells(NewFinal, 2))
 .ChartType = xlXYScatter
 .MarkerStyle = xlMarkerStyleNone
 End With

 ‘ Label each point in the series
 ‘ This code actually adds fake labels along left axis
 For i = 1 To TickMarkCount
 Ser.Points(i).HasDataLabel = True
 Ser.Points(i).DataLabel.Text = Cells(AxisRow + i, 1).Value
 Next i

 ‘ Hide the Y label in the legend
 Cht.Legend.LegendEntries(Cht.Legend.LegendEntries.Count).Delete
End Sub

http://www.andypope.info
http://peltiertech.com

Chapter 11 Creating Charts244

Exporting a Chart as a Graphic
You can export any chart to an image file on your hard drive. The ExportChart method

requires you to specify a filename and a graphic type. The available graphic types depend

on graphic file filters installed in your Registry. It is a safe bet that JPG, BMP, PNG, and

GIF will work on most computers.

For example, the following code exports the active chart as a GIF file:

Sub ExportChart()
 Dim cht As Chart
 Set cht = ActiveChart
 cht.Export Filename:=”C:\Chart.gif”, Filtername:=”GIF”
End Sub

Since Excel 2003, Microsoft has supported an Interactive argument in the Export method. Excel Help

indicates that if you set Interactive to TRUE, Excel asks for additional settings depending on the file

type. However, the dialog that asks for additional settings never appears—at least not for the four

standard types of JPG, GIF, BMP, or PNG. To prevent any questions from popping up in the middle of

your macro, set Interactive:=False.

C A U T I O N

Creating a Dynamic Chart in a Userform
With the ability to export a chart to a graphic file, you can also load a graphic file into an

Image control in a userform. This means you can create a dialog box in which someone can

dynamically control values used to plot a chart.

To create the dialog shown in Figure 11.14, follow these steps:

Figure 11.14
This dialog box is a VBA
userform displaying a
chart. The chart redraws
based on changes to the
dialog controls.

245Exporting a Chart as a Graphic

 1. In the VBA window, select Insert, UserForm. In the Properties window, rename the

form frmChart.

 2. Resize the userform.

 3. Add a large Image control to the userform.

 4. Add two spin buttons named sbX and sbY. Set them to have a minimum of 1 and a

maximum of 5.

 5. Add a Label3 control to display the formula.

 6. Add a command button labeled Close.

 7. Enter this code in the code window behind the form:

Private Sub CommandButton1_Click()
 Unload Me
End Sub

Private Sub sbX_Change()
 MyPath = ThisWorkbook.Path & Application.PathSeparator & “Chart.gif”
 Worksheets(“Surface”).Range(“O2”).Value = Me.sbX.Value
 Worksheets(“Surface”).Shapes(“Chart 1”).Chart.Export MyPath
 Me.Label3.Caption = Worksheets(“Surface”).Range(“O4”).Value
 Me.Image1.Picture = LoadPicture(MyPath)
End Sub

Private Sub sbY_Change()
 MyPath = ThisWorkbook.Path & Application.PathSeparator & “Chart.gif”
 Worksheets(“Surface”).Range(“O3”).Value = Me.sbY.Value
 Worksheets(“Surface”).Shapes(“Chart 1”).Chart.Export MyPath
 Me.Label3.Caption = Worksheets(“Surface”).Range(“O4”).Value
 Me.Image1.Picture = LoadPicture(MyPath)
End Sub

Private Sub UserForm_Initialize()
 MyPath = ThisWorkbook.Path & Application.PathSeparator & “Chart.gif”
 Me.sbX = Worksheets(“Surface”).Range(“O2”).Value
 Me.sbY = Worksheets(“Surface”).Range(“O3”).Value
 Me.Label3.Caption = Worksheets(“Surface”).Range(“O4”).Value
 Worksheets(“Surface”).Shapes(“Chart 1”).Chart.Export MyPath
 Me.Image1.Picture = LoadPicture(MyPath)
End Sub

 8. Use Insert, Module to add a Module1 component with this code:

Sub ShowForm()
 frmChart.Show
End Sub

As someone changes the spin buttons in the userform, Excel writes new values to the work-

sheet. This causes the chart to update. The userform code then exports the chart and dis-

plays it in the userform, as shown in Figure 11.14.

Chapter 11 Creating Charts246

Creating Pivot Charts
A pivot chart is a chart that uses a pivot table as the underlying data source. Unfortunately,

pivot charts do not have the cool “show pages” functionality that regular pivot tables have.

You can overcome this problem with a quick VBA macro that creates a pivot table and then

a pivot chart based on the pivot table. The macro then adds the customer field to the report

filter area of the pivot table. It then loops through each customer and exports the chart for

each customer.

In Excel 2010, you first create a pivot cache by using the PivotCache.Create method. You

can then define a pivot table based on the pivot cache. The usual procedure is to turn off

pivot table updating while you add fields to the pivot table. Then you update the pivot table

to have Excel perform the calculations.

It takes a bit of finesse to figure out the final range of the pivot table. If you have turned

off the column and row totals, the chartable area of the pivot table starts one row below the

PivotTableRange1 area. You have to resize the area to include one fewer row to make your

chart appear correctly.

After the pivot table is created, you can switch back to the Charts.Add code discussed earlier

in this chapter. You can use any formatting code to get the chart formatted as you desire.

The following code creates a pivot table and a single pivot chart that summarize revenue by

region and product:

Sub CreateSummaryReportUsingPivot()
 Dim WSD As Worksheet
 Dim PTCache As PivotCache
 Dim PT As PivotTable
 Dim PRange As Range
 Dim FinalRow As Long
 Dim ChartDataRange As Range
 Dim Cht As Chart
 Set WSD = Worksheets(“Data”)

 ‘ Delete any prior pivot tables
 For Each PT In WSD.PivotTables
 PT.TableRange2.Clear
 Next PT
 WSD.Range(“I1:Z1”).EntireColumn.Clear

 ‘ Define input area and set up a Pivot Cache
 FinalRow = WSD.Cells(Application.Rows.Count, 1).End(xlUp).Row
 FinalCol = WSD.Cells(1, Application.Columns.Count). _
 End(xlToLeft).Column
 Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)

247Creating Pivot Charts

 Set PTCache = ActiveWorkbook.PivotCaches.Create(SourceType:= _
 xlDatabase, SourceData:=PRange.Address)

 ‘ Create the Pivot Table from the Pivot Cache
 Set PT = PTCache.CreatePivotTable(TableDestination:=WSD. _
 Cells(2, FinalCol + 2), TableName:=”PivotTable1”)

 ‘ Turn off updating while building the table
 PT.ManualUpdate = True

 ‘ Set up the row fields
 PT.AddFields RowFields:=”Region”, ColumnFields:=”Product”, _
 PageFields:=”Customer”

 ‘ Set up the data fields
 With PT.PivotFields(“Revenue”)
 .Orientation = xlDataField
 .Function = xlSum
 .Position = 1
 End With

 With PT
 .ColumnGrand = False
 .RowGrand = False
 .NullString = “0”
 End With

 ‘ Calc the pivot table
 PT.ManualUpdate = False
 PT.ManualUpdate = True

 ‘ Define the Chart Data Range
 Set ChartDataRange = _
 PT.TableRange1.Offset(1, 0).Resize(PT.TableRange1.Rows.Count - 1)

 ‘ Add the Chart
 WSD.Shapes.AddChart.Select
 Set Cht = ActiveChart
 Cht.SetSourceData Source:=ChartDataRange
 ‘ Format the Chart
 Cht.ChartType = xlColumnClustered
 Cht.SetElement (msoElementChartTitleAboveChart)
 Cht.ChartTitle.Caption = “All Customers”
 Cht.SetElement msoElementPrimaryValueAxisThousands
 ‘ Excel 2010 only. Next line will not work in 2007
 Cht.ShowAllFieldButtons = False
End Sub

Figure 11.15 shows the resulting chart and pivot table.

Chapter 11 Creating Charts248

Figure 11.15
VBA creates a pivot table
and then a chart from
the pivot table. Excel
automatically displays the
PivotChart Filter window
in response.

Read this chapter.

This chapter was among the best chapters in the

previous edition of this book. In the three years

since that edition was released, I have discovered

even more uses for Advanced Filter, AutoFilter, and

even GoTo Special. In “Replacing a Loop With

AutoFilter,” you will see a topic that I first discov-

ered while researching the book, Excel Gurus Gone
Wild. This technique is dramatically faster than

looking through records.

I am writing this on a Continental flight from

Cleveland to Dallas after co-presenting at the

Power Analyst Boot Camp. Several attendees had

specific problems that needed to be solved with

VBA. New filtering methods solved all of those

problems. You will see those problems as case stud-

ies in this chapter.

I will estimate that I end up using one of these fil-

tering techniques as the core of a macro in 80 per-

cent of the macros that I develop for clients. Given

that Advanced Filter is used in less than 1 percent

of Excel sessions, this is a dramatic statistic.

So even if you hardly ever use Advanced Filter in

regular Excel, you should study this chapter for

powerful VBA techniques.

Replacing a Loop with AutoFilter
In Chapter 6, “R1C1-Style Formulas,” you read

about several ways to loop through a dataset to

format records that match certain criteria. By using

the AutoFilter, you can achieve the same result

much faster.

Let’s say that you have a dataset as shown in Figure

12.1, and you want to perform some action on all

the records that match a certain criteria.

Data Mining with
Advanced Filter

12

Chapter 12 Data Mining with Advanced Filter250

In Chapter 6, you learned to write code like this to color all the Ford records green:

Sub OldLoop()
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
 For i = 2 To FinalRow
 If Cells(i, 4) = “Ford” Then
 Cells(i, 1).Resize(1, 8).Interior.ColorIndex = 4
 End If
 Next i
End Sub

If you needed to delete records, you had to be careful to run the loop from the bottom of

the dataset to the top using code like this:

Sub OldLoopToDelete()
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
 For i = FinalRow To 2 Step -1
 If Cells(i, 4) = “Ford” Then
 Rows(i).Delete
 End If
 Next i
End Sub

The AutoFilter method enables you to isolate all the Ford records in a single line of code:

Range(“A1”).AutoFilter Field:=4, Criteria1:=”Ford”

After isolating the matching records, you do not need to use the VisibleCellsOnly setting to

format the matching records. Instead, the following line of code will format all the match-

ing records to be green:

Range(“A1”).CurrentRegion.Interior.ColorIndex = 4

Figure 12.1
Find all Ford records and
mark them.

Note that the .CurrentRegion property extends the A1 reference to include the entire dataset.

N
O

T
E

There are two problems with the current two-line macro. First, the program leaves the

AutoFilter drop-downs in the dataset. Second, the heading row is also formatted in green.

If you want to turn off the AutoFilter drop-downs and clear the filter, this single line of

code will work:

Range(“A1”).AutoFilter

251Replacing a Loop with AutoFilter

If you want to leave the AutoFilter drop-downs on but clear the Column D drop-down

from showing Ford, you can use this line of code:

ActiveSheet.ShowAllData

The second problem is a bit more difficult. After you apply the filter, select Range(“A1”).

CurrentRegion includes the headers automatically in the selection. Any formatting is also

applied to the header row.

If you did not care about the first blank row below the data, you could simply add an

OFFSET(1) to move the current region down to start in A2. This would be fine if your goal

were to delete all the Ford records:

Sub DeleteFord()
 ‘ skips header, but also deletes blank row below
 Range(“A1:A1”).AutoFilter Field:=4, Criteria1:=”Ford”
 Range(“A1”).CurrentRegion.Offset(1).EntireRow.Delete
 Range(“A1”).AutoFilter

End Sub

The OFFSET property usually requires the number of rows and the number of columns. Using

.OFFSET(-2, 5) moves two rows up and five columns right. If you do not want to adjust by any

columns, you can leave off the column parameter. .OFFSET(1) means one row down and zero col-

umns over.

N
O

T
E

The preceding code works because you do not mind if the first blank row below the data is

deleted. However, if you are applying a green format to those rows, the code will apply the

green format to the blank row below the dataset, which would not look right.

If you will be doing some formatting, you can determine the height of the dataset and use

.Resize to reduce the height of the current region while you use OFFSET:

Sub ColorFord()
 DataHt = Range(“A1”).CurrentRegion.Rows.Count
 Range(“A1”).AutoFilter Field:=4, Criteria1:=”Ford”

 With Range(“A1”).CurrentRegion.Offset(1).Resize(DataHt - 1)
 ‘ No need to use VisibleCellsOnly for formatting
 .Interior.ColorIndex = 4
 .Font.Bold = True
 End With
 ‘ Clear the AutoFilter & remove drop-downs
 Range(“A1”).AutoFilter

End Sub

Using New AutoFilter Techniques
Excel 2007 introduced the possibility of selecting multiple items from a filter, filtering by

color, filtering by icon, filtering by top 10, and filtering to virtual date filters. Excel 2010

Chapter 12 Data Mining with Advanced Filter252

introduces the new search box in the filter drop-down. All these new filters have VBA

equivalents, although some of them are implemented in VBA using legacy filtering meth-

ods.

Selecting Multiple Items

Legacy versions of Excel allowed you to select two values, joined by AND or OR. In this case,

you would specify xlAND or xlOR as the operator:

Range(“A1”).AutoFilter Field:=4, _
 Criteria1:=”Ford”, _
 Operator:=xlOr, _
 Criteria2:=”General Motors”

As the AutoFilter command became more flexible, Microsoft continued to use the same

three parameters, even if they didn’t quite make sense. For example, Excel lets you filter a

field by asking for the top five items or the bottom 8 percent of records. To use this type of

filter, specify either “5” or “8” as the Criteria1 argument, and then specify xlTop10Items,

xlTop10Percent, xlBottom10Items, xlBottom10Percent as the operator. The following code

produces the top 12 revenue records:

Sub Top10Filter()
 ‘ Top 12 Revenue Records
 Range(“A1”).AutoFilter Field:=6, _
 Criteria1:=”12”, _
 Operator:=xlTop10Items
End Sub

There are a lot of numbers (5, 12, 10) in the code for this AutoFilter. Field 5 indicates that

you are looking at the fifth column. xlTop10Items is the name of the filter, but the filter is

not limited to 10 items. The criteria of 12 indicates the number of items that you want the

filter to return.

Excel 2010 offers several new filter options. Excel continues to force these filter options to

fit in the old object model where the filter command must fit in an operator and up to two

criteria fields.

If you want to choose three or more items, change the operator to the newly introduced

Operator:=xlFilterValues and specify the list of items as an array in the Criteria1 argu-

ment:

Range(“A1”).AutoFilter Field:=4, _
 Criteria1:=Array(“General Motors”, “Ford”, “Fiat”), _
 Operator:=xlFilterValues

Selecting Using the Search Box

Excel 2010 introduces the new Search box in the AutoFilter drop-down. After typing some-

thing in the Search box, you can use the Select All Search Results item in the Filter drop-

down, as shown in Figure 12.2.

253Replacing a Loop with AutoFilter

The macro recorder does a poor job of recording the Search box. The macro recorder

hard-codes a list of customers who matched the search at the time you ran the macro.

Think about the Search box. It is really a shortcut way of selecting Text Filters, Contains.

In addition, the Contains filter is actually a shortcut way of specifying the search string sur-

rounded by asterisks. Therefore, to filter to all the records that contain “AT,” use this:

Range(“A1”).AutoFilter, Field:=4, Criteria1:=”*at*”

Filtering by Color

To find records that have a particular font color, use an operator of xlFilterFontColor and

specify a particular RGB value as the criteria. This code finds all cells with a red font in

Column F:

Sub FilterByFontColor()
 Range(“A1”).AutoFilter Field:=6, _
 Criteria1:=RGB(255, 0, 0), Operator:=xlFilterFontColor
End Sub

To find records that have no particular font color, use an operator of xlFilterAutomatic-

FillColor and do not specify any criteria.

Sub FilterNoFontColor()
 Range(“A1”).AutoFilter Field:=6, _
 Operator:=xlFilterAutomaticFontColor
End Sub

To find records that have a particular fill color, use an operator of xlFilterCellColor and

specify a particular RGB value as the criteria. This code finds all red cells in Column F:

Sub FilterByFillColor()
 Range(“A1”).AutoFilter Field:=6, _
 Criteria1:=RGB(255, 0, 0), Operator:=xlFilterCellColor
End Sub

To find records that have no fill color, use an operator of xlFilterNoFill and do not specify

any criteria.

New Search Box

Figure 12.2
Find all records contain-
ing “AT.”

Chapter 12 Data Mining with Advanced Filter254

Filtering by Icon

If you are expecting the dataset to have an icon set applied, you can filter to show only

records with one particular icon by using the xlFilterIcon operator.

For the criteria, you have to know which icon set has been applied and which icon within

the set. The icon sets are identified using the names shown in Column A of Figure 12.3.

The items range from 1 through 5. The following code filters the Revenue column to show

the rows containing an upward-pointing arrow in the 5 Arrows Gray icon set:

Sub FilterByIcon()
 Range(“A1”).AutoFilter Field:=6, _
 Criteria1:=ActiveWorkbook.IconSets(xl5ArrowsGray).Item(5), _
 Operator:=xlFilterIcon
End Sub

Figure 12.3
To search for a particular
icon, you need to know
the icon set from Column
A and the item number
from Row 1.

To find records that have no conditional formatting icon, use an operator of xlFilterNoI-

con and do not specify any criteria.

Selecting a Dynamic Date Range Using AutoFilters

Perhaps the most powerful feature in Excel 2010 filters are the dynamic filters. These filters

enable you to choose records that are above average or with a date field to select virtual

periods, such as Next Week or Last Year.

To use a dynamic filter, specify xlFilterDynamic as the operator and then use one of 34 val-

ues as Criteria1. The following code finds all dates that are in next year:

255Replacing a Loop with AutoFilter

Sub DynamicAutoFilter()
 Range(“A1”).AutoFilter Field:=3, _
 Criteria1:=xlFilterNextYear, _
 Operator:=xlFilterDynamic
End Sub

The following lists all the dynamic filter criteria options. Specify these values as Criteria1

in the AutoFilter method:

 ■ Criteria for values—Use xlFilterAboveAverage or xlFilterBelowAverage to find all

the rows that are above or below average. Note that in Lake Wobegon, using xlFil-

terBelowAverage will likely return no records.

 ■ Criteria for future periods—Use xlFilterTomorrow, xlFilterNextWeek, xlFil-

terNextMonth, xlFilterNextQuarter, or xlFilterNextYear to find rows that fall in a

certain future period. Note that next week starts on Sunday and ends on Saturday.

 ■ Criteria for current periods—Use xlFilterToday, xlFilterThisWeek, xlFilterThis-

Month, xlFilterThisQuarter, or xlFilterThisYear to find rows that fall within the cur-

rent period. Excel will use the system clock to find the current day.

 ■ Criteria for past periods—Use xlFilterYesterday, xlFilterLastWeek, xlFilterLast-

Month, xlFilterLastQuarter, xlFilterLastYear, or xlFilterYearToDate to find rows

that fell within a previous period.

 ■ Criteria for specific quarters—Use xlFilterDatesInPeriodQuarter1, xlFilterDa-

tesInPeriodQuarter2, xlFilterDatesInPeriodQuarter3, or xlFilterDatesInPeriod-

Quarter4 to filter to rows that fall within a specific quarter. Note that these filters do

not differentiate based on a year. If you ask for quarter 1, you might get records from

this January, last February, and next March.

 ■ Criteria for specific months—Use xlFilterDatesInPeriodJanuary through xlFilter-

DatesInPeriodDecember to filter to records that fall during a certain month. Like the

quarters, the filter does not filter to any particular year.

Unfortunately, you cannot combine criteria. You might think that you can specify xlFil-

terDatesInPeriodJanuary as Criteria1 and xlFilterDatesNextYear as Criteria2. Even

though this is a brilliant thought, Microsoft does not support this syntax (yet).

Selecting Visible Cells Only
Once you apply a filter, most commands only operate on the visible rows in the selection.

If you need to delete the records, format the records, apply a conditional format to the

records, you can simply refer to the .CurrentRegion of the first heading cell and perform

the command.

However, if you have a dataset where the rows have been hidden using the Hide Rows com-

mand, any formatting applied to the .CurrentRegion will apply to the hidden rows, too. In

these cases, you should use the Visible Cells Only option of the Go To Special dialog, as

shown in Figure 12.4.

Chapter 12 Data Mining with Advanced Filter256

To use Visible Cells Only in code, use the SpecialCells property:

Range(“A1”).CurrentRegion.SpecialCells(xlCellTypeVisible)

Figure 12.4
If rows have been manu-
ally hidden, use Visible
Cells Only of the Go To
Special dialog.

The Go To Special dialog also plays a role in the following case study:

At the 2009 Data Analyst Boot Camp, one of the attendees had a macro that was taking a long time to run. The workbook

had a number of selection controls. A complex IF function in cells H10:H750 was choosing which records should be

included in a report. While that IF statement had many nested conditions, the formula was inserting either KEEP or

HIDE in each cell:

=IF(True,”KEEP”,”HIDE”)

The following section of code was hiding individual rows:

For Each cell In Range(“H10:H750”)
 If cell.Value = “HIDE” Then
 cell.EntireRow.Hidden = True
 End If
Next cell

The macro was taking several minutes to run. SUBTOTAL formulas that excluded hidden rows were recalculating after

each pass through the loop. The first attempts to speed up the macro involved turning off screen updating and calcula-

tion:

Application.ScreenUpdating = False
Application.Calculation = xlCalculationManual
For Each cell In Range(“H10:H750”)
 If cell.Value = “HIDE” Then
 cell.EntireRow.Hidden = True
 End If
Next cell
Application.Calculation = xlCalculationAutomatic
Application.ScreenUpdating = True

C A S E S T U D Y : G O T O S P E C I A L I N S T E A D O F L O O P I N G

257Advanced Filter Is Easier in VBA Than in Excel

Advanced Filter Is Easier in VBA Than in Excel
Using the arcane Advanced Filter command is so difficult in the Excel user interface that it

is pretty rare to find someone who enjoys using it regularly.

However, in VBA, advanced filters are a joy to use. With a single line of code, you can

rapidly extract a subset of records from a database or quickly get a unique list of values in

any column. This is critical when you want to run reports for a specific region or customer.

Two advanced filters are used most often in the same procedure—one to get a unique list of

customers and a second to filter to each individual customer, as shown in Figure 12.5. The

rest of this chapter builds toward such a routine.

For some reason, it was still taking too long to loop through all the records. We tried using AutoFilter to isolate the HIDE

records, then hiding those rows, but you lose the manual row hiding after turning off the AutoFilter.

The solution was to make use of the Special Cells dialog’s ability to limit the selection to text results of formulas. First, the

formula in Column H was changed to return either HIDE or a number:

=IF(True,”KEEP”,1)

Then, the following single line of code was able to hide the rows that evaluated to a text value in Column H:

Range(“H10:H750”) _
 .SpecialCells(xlCellTypeFormulas, xlTextValues) _
 .EntireRow.Hidden = True

Because all the rows were hidden in a single command, that section of the macro ran in seconds rather than minutes.

To see a demo of this case study, search for Excel VBA 12 at YouTube.

Initial Advanced Filter

Second Advanced Filter in Loop

Figure 12.5
A typical macro uses two
advanced filters.

Chapter 12 Data Mining with Advanced Filter258

Using the Excel Interface to Build an Advanced Filter
Because not many people use the Advanced Filter feature, this section walks you through

examples using the user interface to build an advanced filter and then shows you the analo-

gous code. You will be amazed at how complex the user interface seems and yet how easy it

is to program a powerful advanced filter to extract records.

One reason why Advanced Filter is hard to use is that you can use the filter in several dif-

ferent ways. You must make three basic choices in the Advanced Filter dialog box. Because

each choice has two options, there are eight (2 x 2 x 2) possible combinations of these

choices. The three choices are shown in Figure 12.6 and described here:

 ■ Action—You can select Filter the List, In-Place, or Copy to Another Location. If you

choose to filter the records in place, the nonmatching rows are hidden. Choosing to

copy to a new location copies the records that match the filter to a new range.

 ■ Criteria—You can filter with or without criteria. Filtering with criteria is appropriate

for getting a subset of rows. Filtering without criteria is still useful when you want a

subset of columns or when you are using the Unique Records Only option.

 ■ Unique—You can choose to request Unique Records Only or all matching records.

The Unique option makes the Advanced Filter command one of the fastest ways to

find a unique list of values in one field. By placing the “Customer” heading in the out-

put range, you will get a unique list of values for that one column.

Figure 12.6
The Advanced Filter dia-
log is complicated to use
in the Excel user interface.
Luckily, it is much easier
in VBA.

Using Advanced Filter to Extract a Unique List of Values
One of the simplest uses of Advanced Filter is to extract a unique list of a single field from

a dataset. In this example, you want to get a unique list of customers from a sales report.

You know that customer is in Column D of the dataset. You have an unknown number of

records starting in cell A2, and Row 1 is the header row. There is nothing located to the

right of the dataset.

259Using Advanced Filter to Extract a Unique List of Values

Extracting a Unique List of Values with the User Interface
To extract a unique list of values, follow these steps:

 1. With the cursor anywhere in the data range, select Advanced from the Sort & Filter

group on the Data tab. The first time that you use the Advanced Filter command on a

worksheet, Excel automatically populates the List Range text box with the entire range

of your dataset. On subsequent uses of the Advanced Filter command, this dialog box

remembers the settings from the prior advanced filter.

2. Select the Unique Records Only check box at the bottom of the dialog.

3. In the Action section, select Copy to Another Location.

4. Type J1 in the Copy To text box.

By default, Excel copies all the columns in the dataset. You can filter just the Customer

column by either limiting the List Range to include only Column D or by specifying one or

more headings in the Copy To range. Either method has its own drawbacks.

Change the List Range to a Single Column

Edit the List Range to point to the Customer column. In this case, it means changing the

default A1:H1127 to D1:D1127. The Advanced Filter dialog should appear.

When you initially edit any range in the dialog box, Excel might be in Point mode. In this mode, press-

ing a left- or right-arrow key will insert a cell reference in the text box. If you see the word Point in the

lower-left corner of your Excel window, press the F2 key to change from Point mode to Edit mode.

T
IP

The drawback of this method is that Excel remembers the list range on subsequent uses of

the Advanced Filter command. If you later want to get a unique list of regions, you will be

constantly specifying the list range.

Copy the Customer Heading Before Filtering

With a little forethought before invoking the Advanced Filter command, you can allow

Excel to keep the default list range of A1:H1127. In cell J1, type the Customer heading.

In Figure 12.6, you leave the List Range field pointing to Columns A through H. Because

the Copy To range of J1 already contains a valid heading from the list range, Excel copies

data only from the Customer column. This is the preferred method, particularly if you will

be doing multiple advanced filters. Because Excel remembers the prior settings from the

last advanced filter, it is more convenient to always filter the entire columns of the list range

and limit the columns by setting up headings in the Copy To range.

After you use either of these methods to perform the advanced filter, a concise list of the

unique customers appears in Column J (see Figure 12.7).

Chapter 12 Data Mining with Advanced Filter260

Extracting a Unique List of Values with VBA Code
In VBA, you use the AdvancedFilter method to carry out the Advanced Filter command.

Again, you have three choices to make:

 ■ Action—Choose to either filter in place with the parameter Action:=xlFilterInPlace

or to copy with Action:=xlFilterCopy. If you want to copy, you also have to specify the

parameter CopyToRange:=Range(“J1”).

 ■ Criteria—To filter with criteria, include the parameter CriteriaRange:=Range(“L

1:L2”). To filter without criteria, omit this optional parameter.

 ■ Unique—To return only unique records, specify the parameter Unique:=True.

The following code sets up a single column output range two columns to the right of the

last-used column in the data range:

Sub GetUniqueCustomers()
 Dim IRange As Range
 Dim ORange As Range

 ‘ Find the size of today’s dataset
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
 NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

 ‘ Set up output range. Copy heading from D1 there
 Range(“D1”).Copy Destination:=Cells(1, NextCol)
 Set ORange = Cells(1, NextCol)

 ‘ Define the Input Range
 Set IRange = Range(“A1”).Resize(FinalRow, NextCol - 2)

 ‘ Do the Advanced Filter to get unique list of customers
 IRange.AdvancedFilter Action:=xlFilterCopy, CopyToRange:=ORange, _
 Unique:=True

End Sub

By default, an advanced filter copies all columns. If you just want one particular column, use

that column heading as the heading in the output range.

The first bit of code finds the final row and column in the dataset. Although it is not neces-

sary to do so, you can define an object variable for the output range (ORange) and for the

input range (IRange).

Figure 12.7
The advanced filter
extracted a unique list
of customers from the
dataset and copied it to
Column J.

261Using Advanced Filter to Extract a Unique List of Values

This code is generic enough that it will not have to be rewritten if new columns are added

to the dataset at a later time. Setting up the object variables for the input and output range

is done for readability rather than out of necessity. The previous code could be written just

as easily like this shortened version:

Sub UniqueCustomerRedux()
 ‘ Copy a heading to create an output range
 Range(“J1”).Value = Range(“D1”).Value
 ‘ Do the Advanced Filter
 Range(“A1”).CurrentRegion.AdvancedFilter xlFilterCopy, _
 CopyToRange:=Range(“J1”), Unique:=True
End Sub

When you run either of the previous blocks of code on the sample dataset, you get a unique

list of customers off to the right of the data. In Figure 12.7, you saw the original dataset in

Columns A:H and the unique customers in Column J. The key to getting a unique list of

customers is copying the header from the Customer field to a blank cell and specifying this

cell as the output range.

After you have the unique list of customers, you can sort the list and add a SUMIF formula to

get total revenue by customer. The following code gets the unique list of customers, sorts

it, and then builds a formula to total revenue by customer. Figure 12.8 shows the results:

Sub RevenueByCustomers()
 Dim IRange As Range
 Dim ORange As Range

 ‘ Find the size of today’s data set
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
 NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

 ‘ Set up output range. Copy heading from D1 there
 Range(“D1”).Copy Destination:=Cells(1, NextCol)
 Set ORange = Cells(1, NextCol)

 ‘ Define the Input Range
 Set IRange = Range(“A1”).Resize(FinalRow, NextCol - 2)

 ‘ Do the Advanced Filter to get unique list of customers
 IRange.AdvancedFilter Action:=xlFilterCopy, _
 CopyToRange:=ORange, Unique:=True

 ‘ Determine how many unique customers we have
 LastRow = Cells(Rows.Count, NextCol).End(xlUp).Row

 ‘ Sort the data
 Cells(1, NextCol).Resize(LastRow, 1).Sort Key1:=Cells(1, NextCol), _
 Order1:=xlAscending, Header:=xlYes

 ‘ Add a SUMIF formula to get totals
 Cells(1, NextCol + 1).Value = “Revenue”
 Cells(2, NextCol + 1).Resize(LastRow - 1).FormulaR1C1 = _
 “=SUMIF(R2C4:R” & FinalRow & _
 “C4,RC[-1],R2C6:R” & FinalRow & “C6)”)

End Sub

Chapter 12 Data Mining with Advanced Filter262

Another use of a unique list of values is to quickly populate a list box or a combo box on

a userform. For example, suppose that you have a macro that can run a report for any

one specific customer. To allow your clients to choose which customers to report, create a

simple userform. Add a list box to the userform and set the list box’s MultiSelect property

to 1-fmMultiSelectMulti. In this case, the form is named frmReport. In addition to the list

box, there are four command buttons: OK, Cancel, Mark All, Clear All. The code to run

the form follows. Note the Userform_Initialize procedure includes an advanced filter to

get the unique list of customers from the dataset:

Private Sub CancelButton_Click()
 Unload Me
End Sub

Private Sub cbSubAll_Click()
 For i = 0 To lbCust.ListCount - 1
 Me.lbCust.Selected(i) = True
 Next i
End Sub

Private Sub cbSubClear_Click()
 For i = 0 To lbCust.ListCount - 1
 Me.lbCust.Selected(i) = False
 Next i
End Sub

Private Sub OKButton_Click()
 For i = 0 To lbCust.ListCount - 1
 If Me.lbCust.Selected(i) = True Then
 ‘ Call a routine to produce this report
 RunCustReport WhichCust:=Me.lbCust.List(i)
 End If
 Next i
 Unload Me
End Sub

Private Sub UserForm_Initialize()
 Dim IRange As Range
 Dim ORange As Range

 ‘ Find the size of today’s data set

Figure 12.8
This macro produced
a summary report
by customer from a
lengthy dataset. Using
AdvancedFilter
is the key to powerful
macros such as these.

263Using Advanced Filter to Extract a Unique List of Values

 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
 NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

 ‘ Set up output range. Copy heading from D1 there
 Range(“D1”).Copy Destination:=Cells(1, NextCol)
 Set ORange = Cells(1, NextCol)

 ‘ Define the Input Range
 Set IRange = Range(“A1”).Resize(FinalRow, NextCol - 2)

 ‘ Do the Advanced Filter to get unique list of customers
 IRange.AdvancedFilter Action:=xlFilterCopy, _
 CopyToRange:=ORange, Unique:=True

 ‘ Determine how many unique customers we have
 LastRow = Cells(Rows.Count, NextCol).End(xlUp).Row

 ‘ Sort the data
 Cells(1, NextCol).Resize(LastRow, 1).Sort Key1:=Cells(1, NextCol), _
 Order1:=xlAscending, Header:=xlYes

With Me.lbCust
 .RowSource = “”
 .List = Cells(2, NextCol).Resize(LastRow - 1, 1).Value
End With

 ‘ Erase the temporary list of customers
 Cells(1, NextCol).Resize(LastRow, 1).Clear
End Sub

Launch this form with a simple module such as this:

Sub ShowCustForm()
 frmReport.Show
End Sub

Your clients are presented with a list of all valid customers from the dataset. Because the list

box’s MultiSelect property is set to allow it, they can select any number of customers, as

shown in Figure 12.9.

Getting Unique Combinations of Two or More Fields
To get all unique combinations of two or more fields, build the output range to include

the additional fields. This code sample builds a list of unique combinations of two fields,

Customer and Product:

Sub UniqueCustomerProduct()
 Dim IRange As Range
 Dim ORange As Range

 ‘ Find the size of today’s data set
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
 NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

Chapter 12 Data Mining with Advanced Filter264

 ‘ Set up output range. Copy headings from D1 & B1
 Range(“D1”).Copy Destination:=Cells(1, NextCol)
 Range(“B1”).Copy Destination:=Cells(1, NextCol + 1)
 Set ORange = Cells(1, NextCol).Resize(1, 2)

 ‘ Define the Input Range
 Set IRange = Range(“A1”).Resize(FinalRow, NextCol - 2)

 ‘ Do the Advanced Filter to get unique list of customers & product
 IRange.AdvancedFilter Action:=xlFilterCopy, _
 CopyToRange:=ORange, Unique:=True

 ‘ Determine how many unique rows we have
 LastRow = Cells(Rows.Count, NextCol).End(xlUp).Row

 ‘ Sort the data
 Cells(1, NextCol).Resize(LastRow, 2).Sort Key1:=Cells(1, NextCol), _
 Order1:=xlAscending, Key2:=Cells(1, NextCol + 1), _
 Order2:=xlAscending, Header:=xlYes

End Sub

In the result shown in Figure 12.10, you can see that Enhanced Eggbeater buys only one

product, and Agile Aquarium buys three products. This might be useful to use as a guide in

running reports on either customer by product or product by customer.

Figure 12.9
Your clients will have a
list of customers from
which to select. Using an
advanced filter on even a
1,000,000-row dataset is
much faster than setting
up a class to populate the
list box.

265Using Advanced Filter with Criteria Ranges

Using Advanced Filter with Criteria Ranges
As the name implies, Advanced Filter is usually used to filter records—in other words, to

get a subset of data. You specify the subset by setting up a criteria range. Even if you are

familiar with criteria, be sure to check out using the powerful Boolean formula in criteria

ranges later in this chapter, in the section “The Most Complex Criteria: Replacing the List

of Values with a Condition Created as the Result of a Formula.”

Set up a criteria range in a blank area of the worksheet. A criteria range always includes two

or more rows. The first row of the criteria range contains one or more field header values

to match the one(s) in the data range you want to filter. The second row contains a value

showing what records to extract. In Figure 12.11, Range J1:J2 is the criteria range, and

Range L1 is the output range.

In the Excel user interface, to extract a unique list of products that were purchased by a

particular customer, select Advanced Filter and set up the Advanced Filter dialog, as shown

in Figure 12.11. Figure 12.12 shows the results.

Figure 12.10
By including two columns
in the output range on a
Unique Values query, we
get every combination of
Customer and Product.

Figure 12.11
To learn a unique list
of products purchased
by Cool Saddle Traders,
set up the criteria range
shown in J1:J2.

Chapter 12 Data Mining with Advanced Filter266

In VBA, you use the following code to perform an equivalent advanced filter:

Sub UniqueProductsOneCustomer()
 Dim IRange As Range
 Dim ORange As Range
 Dim CRange As Range

 ‘ Find the size of today’s dataset
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
 NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

 ‘ Set up the Output Range with one customer
 Cells(1, NextCol).Value = Range(“D1”).Value
 ‘ In reality, this value should be passed from the userform
 Cells(2, NextCol).Value = Range(“D2”).Value
 Set CRange = Cells(1, NextCol).Resize(2, 1)

 ‘ Set up output range. Copy heading from B1 there
 Range(“B1”).Copy Destination:=Cells(1, NextCol + 2)
 Set ORange = Cells(1, NextCol + 2)

 ‘ Define the Input Range
 Set IRange = Range(“A1”).Resize(FinalRow, NextCol - 2)

 ‘ Do the Advanced Filter to get unique list of customers & product
 IRange.AdvancedFilter Action:=xlFilterCopy, _
 CriteriaRange:=CRange, CopyToRange:=ORange, Unique:=True
 ‘ The above could also be written as:
 ‘IRange.AdvancedFilter xlFilterCopy, CRange, ORange, True

 ‘ Determine how many unique rows we have
 LastRow = Cells(Rows.Count, NextCol + 2).End(xlUp).Row

 ‘ Sort the data
 Cells(1, NextCol + 2).Resize(LastRow, 1).Sort Key1:=Cells(1, NextCol + 2), _
 Order1:=xlAscending, Header:=xlYes

End Sub

Figure 12.12
The results of the
advanced filter that
uses a criteria range and
asks for a unique list of
products. Of course, more
complex and interesting
criteria can be built.

267Using Advanced Filter with Criteria Ranges

Joining Multiple Criteria with a Logical OR
You might want to filter records that match one criteria or another. For example, you can

extract customers who purchased either product M556 or product R537. This is called a

logical OR criteria.

When your criteria should be joined by a logical OR, place the criteria on subsequent rows

of the criteria range. For example, the criteria range shown in J1:J3 of Figure 12.13 tells

you which customers order product M556 or product R357.

Figure 12.13
Place criteria on succes-
sive rows to join them
with an OR. This criteria
range gets customers
who ordered either prod-
uct M556 or R537.

Joining Two Criteria with a Logical AND
Other times, you will want to filter records that match one criteria and another criteria.

For example, you might want to extract records where the product sold was W435 and the

region was the West region. This is called a logical AND.

To join two criteria by AND, put both criteria on the same row of the criteria range. For

example, the criteria range shown in J1:K2 of Figure 12.14 gets the customers who ordered

product W435 in the West region.

Figure 12.14
Place criteria on the same
row to join them with an
AND. The criteria range
in J1:K2 gets customers
from the West region who
ordered product W435.

Other Slightly Complex Criteria Ranges
The criteria range shown in Figure 12.15 is based on two different fields that are joined

with an OR. The query finds all records from either the West region or records where the

product is W435.

Chapter 12 Data Mining with Advanced Filter268

Figure 12.15
The criteria range in J1:K3
returns records where
either the Region is West
or the Product is W435.

The Most Complex Criteria: Replacing the List of Values with a Condition Created
as the Result of a Formula

It is possible to have a criteria range with multiple logical AND and logical OR criteria

joined together. Although this might work in some situations, in other scenarios it quickly

gets out of hand. Fortunately, Excel allows for criteria where the records are selected as the

result of a formula to handle this situation.

Joining two criteria with OR might be useful where new California legislation will impact shipments

made to California or products sourced at the California plant.

T
IP

Your clients so loved the “Create a Customer” report, they hired you to write a new report. In this case, they could select

any customer, any product, any region, or any combination of them. You can quickly adapt the frmReport userform to

show three list boxes, as shown in Figure 12.16.

In your first test, imagine that you select two customers and two products. In this case, your program has to build a five-

row criteria range, as shown in Figure 12.17. This isn’t too bad.

This gets crazy if someone selects 10 products, all regions but the house region, and all customers except the internal cus-

tomer. Your criteria range would need unique combinations of the selected fields. This could easily be 10 products times 9

regions times 499 customers, or more than 44,000 rows of criteria range. You can quickly end up with a criteria range that

spans thousands of rows and three columns. I was once foolish enough to actually try running an advanced filter with

such a criteria range. It would still be trying to compute if I hadn’t rebooted the computer.

The solution for this report is to replace the lists of values with a formula-based condition.

C A S E S T U D Y : W O R K I N G W I T H V E R Y C O M P L E X C R I T E R I A

269Using Advanced Filter with Criteria Ranges

Setting Up a Condition as the Result of a Formula

Amazingly, there is an incredibly obscure version of Advanced Filter criteria that can replace the

44,000-row criteria range in the previous case study. In the alternative form of criteria range, the

top row is left blank. There is no heading above the criteria. The criteria set up in Row 2 are a

formula that results in True or False. If the formula contains any relative references to Row 2 of

the data range, Excel compares that formula to every row of the data range, one by one.

For example, if you want all records where the Gross Profit Percentage is below 53 percent, the

formula built in J2 will reference the Profit in H2 and the Revenue in F2. To do this, leave J1

blank to tell Excel that you are using a computed criterion. Cell J2 contains the formula =(H2/

F2)<0.53. The criteria range for the advanced filter would be specified as J1:J2.

As Excel performs the advanced filter, it logically copies the formula and applies it to all rows in

the database. Anywhere that the formula evaluates to True, the record is included in the output

range.

This is incredibly powerful and runs remarkably fast. You can combine multiple formulas in adja-

cent columns or rows to join the formula criteria with AND or OR, just as you do with regular

criteria.

Figure 12.16
This super-flexible form
lets clients run any types
of reports that they can
imagine. It creates some
nightmarish criteria
ranges, unless you know
the way out.

Figure 12.17
This criteria range returns
any records where the
two selected customers
ordered any of the two
selected products.

Chapter 12 Data Mining with Advanced Filter270

Row 1 of the criteria range doesn’t have to be blank, but it cannot contain any words that are headings

in the data range. You could perhaps use that row to explain that someone should look to this page in

this book for an explanation of these computed criteria.
N

O
T

E

You can use formula-based conditions to solve the report introduced in the previous case study. Figure 12.18 shows the

flow of setting up a formula-based criteria.

To illustrate, off to the right of the criteria range set up a column of cells with the list of selected customers. Assign a

name to the range, such as MyCust. In cell J2 of the criteria range, enter a formula such as =Not(ISNA(Match(D2,My

Cust,0))).

To the right of the MyCust range, set up a range with a list of selected products. Assign this range the name of MyProd. In

the K2 of the criteria range, add a formula to check products, =NOT(ISNA(Match(B2,MyProd,0))).

To the right of the MyProd range, set up a range with a list of selected regions. Assign this range the name of MyRegion.

In L2 of the criteria range, add a formula to check for selected regions, =NOT(ISNA(Match(A2,MyRegion,0))).

Now, with a criteria range of J1:L2, you can effectively retrieve the records matching any combination of selections from

the userform.

C A S E S T U D Y : U S I N G F O R M U L A - B A S E D C O N D I T I O N S I N T H E E X C E L
U S E R I N T E R F A C E

Figure 12.18
Data in O:Q is used in
formulas in J2:L2.

271Using Advanced Filter with Criteria Ranges

Using Formula-Based Conditions with VBA

The following is the code for this userform. Note the logic in OKButton_Click that builds

the formula. Figure 12.19 shows the Excel sheet just before the advanced filter is run.

The following code initializes the user form. Three advanced filters find the unique list of

customers, products, and regions:

Private Sub UserForm_Initialize()
 Dim IRange As Range
 Dim ORange As Range

 ‘ Find the size of today’s data set
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
 NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

 ‘ Define the input range
 Set IRange = Range(“A1”).Resize(FinalRow, NextCol - 2)

 ‘ Set up output range for Customer. Copy heading from D1 there
 Range(“D1”).Copy Destination:=Cells(1, NextCol)
 Set ORange = Cells(1, NextCol)

 ‘ Do the Advanced Filter to get unique list of customers
 IRange.AdvancedFilter Action:=xlFilterCopy, CriteriaRange:=””, _
 CopyToRange:=ORange, Unique:=True

 ‘ Determine how many unique customers we have
 LastRow = Cells(Rows.Count, NextCol).End(xlUp).Row

 ‘ Sort the data
 Cells(1, NextCol).Resize(LastRow, 1).Sort Key1:=Cells(1, NextCol), _
 Order1:=xlAscending, Header:=xlYes

 With Me.lbCust
 .RowSource = “”
 .List = Application.Transpose(Cells(2,NextCol).Resize(LastRow-1,1))
 End With

 ‘ Erase the temporary list of customers
 Cells(1, NextCol).Resize(LastRow, 1).Clear

 ‘ Set up output range for product. Copy heading from D1 there

Figure 12.19
The worksheet just before
the macro runs the
advanced filter.

Chapter 12 Data Mining with Advanced Filter272

 Range(“B1”).Copy Destination:=Cells(1, NextCol)
 Set ORange = Cells(1, NextCol)

 ‘ Do the Advanced Filter to get unique list of customers
 IRange.AdvancedFilter Action:=xlFilterCopy, _
 CopyToRange:=ORange, Unique:=True

 ‘ Determine how many unique customers we have
 LastRow = Cells(Rows.Count, NextCol).End(xlUp).Row

 ‘ Sort the data
 Cells(1, NextCol).Resize(LastRow, 1).Sort Key1:=Cells(1, NextCol), _
 Order1:=xlAscending, Header:=xlYes

 With Me.lbProduct
 .RowSource = “”
 .List = Application.Transpose(Cells(2,NextCol).Resize(LastRow-1,1))
 End With

 ‘ Erase the temporary list of customers
 Cells(1, NextCol).Resize(LastRow, 1).Clear

 ‘ Set up output range for Region. Copy heading from A1 there
 Range(“A1”).Copy Destination:=Cells(1, NextCol)
 Set ORange = Cells(1, NextCol)

 ‘ Do the Advanced Filter to get unique list of customers
 IRange.AdvancedFilter Action:=xlFilterCopy, CopyToRange:=ORange, _
 Unique:=True

 ‘ Determine how many unique customers we have
 LastRow = Cells(Rows.Count, NextCol).End(xlUp).Row

 ‘ Sort the data
 Cells(1, NextCol).Resize(LastRow, 1).Sort Key1:=Cells(1, NextCol), _
 Order1:=xlAscending, Header:=xlYes

 With Me.lbRegion
 .RowSource = “”
 .List = Application.Transpose(Cells(2,NextCol).Resize(LastRow-1,1))
 End With

 ‘ Erase the temporary list of customers
 Cells(1, NextCol).Resize(LastRow, 1).Clear

End Sub

These tiny procedures run when someone clicks Mark All or Clear All:

Private Sub CancelButton_Click()
 Unload Me
End Sub

Private Sub cbSubAll_Click()
 For i = 0 To lbCust.ListCount - 1
 Me.lbCust.Selected(i) = True

273Using Advanced Filter with Criteria Ranges

 Next i
End Sub

Private Sub cbSubClear_Click()
 For i = 0 To lbCust.ListCount - 1
 Me.lbCust.Selected(i) = False
 Next i
End Sub

Private Sub CommandButton1_Click()
 ‘ Clear all products
 For i = 0 To lbProduct.ListCount - 1
 Me.lbProduct.Selected(i) = False
 Next i
End Sub

Private Sub CommandButton2_Click()
 ‘ Mark all products
 For i = 0 To lbProduct.ListCount - 1
 Me.lbProduct.Selected(i) = True
 Next i
End Sub

Private Sub CommandButton3_Click()
 ‘ Clear all regions
 For i = 0 To lbRegion.ListCount - 1
 Me.lbRegion.Selected(i) = False
 Next i
End Sub

Private Sub CommandButton4_Click()
 ‘ Mark all regions
 For i = 0 To lbRegion.ListCount - 1
 Me.lbRegion.Selected(i) = True
 Next i
End Sub

The following code is attached to the OK button. This code builds three ranges in O, P,

and Q that list the selected customers, products, and regions. The actual criteria range is

comprised of three blank cells in J1:L1 and then three formulas in J2:L2.

Private Sub OKButton_Click()
 Dim CRange As Range, IRange As Range, ORange As Range
 ‘ Build a complex criteria that ANDS all choices together
 NextCCol = 10
 NextTCol = 15

 For j = 1 To 3
 Select Case j
 Case 1
 MyControl = “lbCust”
 MyColumn = 4
 Case 2
 MyControl = “lbProduct”
 MyColumn = 2
 Case 3
 MyControl = “lbRegion”

Chapter 12 Data Mining with Advanced Filter274

 MyColumn = 1
 End Select
 NextRow = 2
 ‘ Check to see what was selected.
 For i = 0 To Me.Controls(MyControl).ListCount - 1
 If Me.Controls(MyControl).Selected(i) = True Then
 Cells(NextRow, NextTCol).Value = _
 Me.Controls(MyControl).List(i)
 NextRow = NextRow + 1
 End If
 Next i
 ‘ If anything was selected, build a new criteria formula
 If NextRow > 2 Then
 ‘ the reference to Row 2 must be relative in order to work
 MyFormula = “=NOT(ISNA(MATCH(RC” & MyColumn & “,R2C” & NextTCol & _
 “:R” & NextRow - 1 & “C” & NextTCol & “,0)))”
 Cells(2, NextCCol).FormulaR1C1 = MyFormula
 NextTCol = NextTCol + 1
 NextCCol = NextCCol + 1
 End If
 Next j
 Unload Me

 ‘ Figure 12.19 shows the worksheet at this point
 ‘ if we built any criteria, define the criteria range
 If NextCCol > 10 Then
 Set CRange = Range(Cells(1, 10), Cells(2, NextCCol - 1))
 Set IRange = Range(“A1”).CurrentRegion
 Set ORange = Cells(1, 20)
 IRange.AdvancedFilter xlFilterCopy, CRange, ORange

 ‘ Clear out the criteria
 Cells(1, 10).Resize(1, 10).EntireColumn.Clear
 End If

 ‘ At this point, the matching records are in T1

End Sub

Figure 12.19 shows the worksheet just before the AdvancedFilter method is called. The

user has selected customers, products, and regions. The macro has built temporary tables in

Columns O, P, Q to show which values the user selected. The criteria range is J1:L2. That

criteria formula in J2 looks to see whether the value in $D2 is in the list of selected custom-

ers in O. The formulas in K2 and L2 compare $B2 to Column P and $A2 to Column Q.

Excel VBA Help says that if you do not specify a criteria range, no criteria is used. This is not true in Excel

2010. When working with Excel 2010, if no criteria range is specified, the advanced filter inherits the

criteria range from the prior advanced filter. You should include CriteriaRange:=”” to clear the

prior value.

C A U T I O N

275Using Filter in Place in Advanced Filter

Using Formula-Based Conditions to Return Above-Average Records

The formula-based conditions formula criteria are cool but are a rarely used feature in a

rarely used function. Some interesting business applications use this technique. For exam-

ple, this criteria formula would find all the above-average rows in the dataset:

=$A2>Average($A$2:$A$60000)

Using Filter in Place in Advanced Filter
It is possible to filter a large dataset in place. In this case, you do not need an output range.

You would normally specify criteria range—otherwise you return 100 percent of the records

and there is no need to do the advanced filter!

In the user interface of Excel, running a Filter in Place makes sense: You can easily peruse

the filtered list looking for something in particular.

Running a Filter in Place in VBA is a little less convenient. The only good way to program-

matically peruse through the filtered records is to use the xlCellTypeVisible option of the

SpecialCells method. In the Excel user interface, the equivalent action is to select Find &

Select, Go to Special from the Home tab. In the Go to Special dialog, select Visible Cells

Only, as shown in Figure 12.20.

Figure 12.20
The Filter in Place option
hides rows that do not
match the selected cri-
teria. However, the only
way to programmatically
see the matching records
is to do the equivalent of
selecting Visible Cells Only
from the Go To Special
dialog box.

To run a Filter in Place, use the constant XLFilterInPlace as the Action parameter in the

AdvancedFilter command and remove the CopyToRange from the command:

IRange.AdvancedFilter Action:=xlFilterInPlace, CriteriaRange:=CRange, _
 Unique:=False

Then, the programmatic equivalent to loop through Visible Cells Only is this code:

For Each cell In Range(“A2:A” & FinalRow).SpecialCells(xlCellTypeVisible)
 Ctr = Ctr + 1
Next cell
MsgBox Ctr & “ cells match the criteria”

Chapter 12 Data Mining with Advanced Filter276

If you know that there would be no blanks in the visible cells, you could eliminate the loop

with

Ctr = Application.Counta(Range(“A2:A” & FinalRow).SpecialCells(xlCellTypeVisi
ble))

Catching No Records When Using Filter in Place
Just as when using Copy, you have to watch out for the possibility of having no records

match the criteria. However, in this case it is more difficult to realize that nothing is

returned. You generally find out when the .SpecialCells method returns a Runtime Error

1004—no cells were found.

To catch this condition, you have to set up an error trap to anticipate the 1004 error with

the SpecialCells method.

 See Chapter 25, “Handling Errors,” for more information on catching errors.

On Error GoTo NoRecs
 For Each cell In Range(“A2:A” & FinalRow).SpecialCells(xlCellTypeVisible)
 Ctr = Ctr + 1
 Next cell
 On Error GoTo 0
 MsgBox Ctr & “ cells match the criteria”
 Exit Sub
NoRecs:
 MsgBox “No records match the criteria”
End Sub

This error trap works because it specifically excludes the header row from the SpecialCells

range. The header row is always visible after an advanced filter. Including it in the range

would prevent the 1004 error from being raised.

Showing All Records After Filter in Place
After doing a Filter in Place, you can get all records to show again by using the ShowAllData

method:

ActiveSheet.ShowAllData

The Real Workhorse: xlFilterCopy with All Records Rather
Than Unique Records Only

The examples at the beginning of this chapter talked about using xlFilterCopy to get a

unique list of values in a field. You used unique lists of customer, region, and product to

populate the list boxes in your report-specific userforms.

However, a more common scenario is to use an advanced filter to return all records that

match the criteria. After the client selects which customer to report, an advanced filter can

extract all records for that customer.

277The Real Workhorse: xlFilterCopy with All Records Rather Than Unique Records Only

In all the examples in the following sections, you want to keep the Unique Records Only

check box cleared. You do this in VBA by specifying Unique:=False as a parameter to the

AdvancedFilter method.

This is not difficult to do, and you have some powerful options. If you need only a subset

of fields for a report, copy only those field headings to the output range. If you want to

resequence the fields to appear exactly as you need them in the report, you can do this by

changing the sequence of the headings in the output range.

The next sections walk you through three quick examples to show the options available.

Copying All Columns
To copy all columns, specify a single blank cell as the output range. You will get all columns

for those records that match the criteria, as shown in Figure 12.21:

Sub AllColumnsOneCustomer()
 Dim IRange As Range
 Dim ORange As Range
 Dim CRange As Range

 ‘ Find the size of today’s dataset
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
 NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

 ‘ Set up the criteria range with one customer
 Cells(1, NextCol).Value = Range(“D1”).Value
 ‘ In reality, this value should be passed from the userform
 Cells(2, NextCol).Value = Range(“D2”).Value
 Set CRange = Cells(1, NextCol).Resize(2, 1)

 ‘ Set up output range. It is a single blank cell
 Set ORange = Cells(1, NextCol + 2)

 ‘ Define the Input Range
 Set IRange = Range(“A1”).Resize(FinalRow, NextCol - 2)

 ‘ Do the Advanced Filter to get unique list of customers & product
 IRange.AdvancedFilter Action:=xlFilterCopy, _
 CriteriaRange:=CRange, CopyToRange:=ORange

End Sub

Criteria Range Output Range

Figure 12.21
When using xlFil-
terCopy with a blank
output range, you get
all columns in the same
order as they appear in
the original list range.

Chapter 12 Data Mining with Advanced Filter278

Copying a Subset of Columns and Reordering
If you are doing the advanced filter to send records to a report, it is likely that you might

only need a subset of columns and you might need them in a different sequence.

This example finishes the frmReport example that was presented earlier in this chapter. As

you recall, frmReport allows the client to select a customer. The OK button then calls the

RunCustReport routine, passing a parameter to identify for which customer to prepare a

report.

Imagine this is a report being sent to the customer. The customer really does not care

about the surrounding region, and you do not want to reveal your cost of goods sold or

profit. Assuming that you will put the customer’s name in the title of the report, the fields

that you need to produce the report are Date, Quantity, Product, Revenue.

The following code copies those headings to the output range. The advanced filter pro-

duces data, as shown in Figure 12.22. The program then goes on to copy the matching

records to a new workbook. A title and total row is added, and the report is saved with the

customer’s name. Figure 12.23 shows the final report.

Sub RunCustReport(WhichCust As Variant)
 Dim IRange As Range
 Dim ORange As Range
 Dim CRange As Range
 Dim WBN As Workbook
 Dim WSN As Worksheet
 Dim WSO As Worksheet

 Set WSO = ActiveSheet
 ‘ Find the size of today’s dataset
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
 NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

 ‘ Set up the criteria range with one customer
 Cells(1, NextCol).Value = Range(“D1”).Value
 Cells(2, NextCol).Value = WhichCust
 Set CRange = Cells(1, NextCol).Resize(2, 1)

 ‘ Set up output range. We want Date, Quantity, Product, Revenue
 ‘ These columns are in C, E, B, and F
 Cells(1, NextCol + 2).Resize(1, 4).Value = _
 Array(Cells(1, 3), Cells(1, 5), Cells(1, 2), Cells(1, 6))
 Set ORange = Cells(1, NextCol + 2).Resize(1, 4)

 ‘ Define the Input Range
 Set IRange = Range(“A1”).Resize(FinalRow, NextCol - 2)

 ‘ Do the Advanced Filter to get unique list of customers & products
 IRange.AdvancedFilter Action:=xlFilterCopy, _
 CriteriaRange:=CRange, CopyToRange:=ORange

 ‘ Create a new workbook with one blank sheet to hold the output
 ‘ xlWBATWorksheet is the template name for a single worksheet
 Set WBN = Workbooks.Add(xlWBATWorksheet)

279The Real Workhorse: xlFilterCopy with All Records Rather Than Unique Records Only

 Set WSN = WBN.Worksheets(1)

 ‘ Set up a title on WSN
 WSN.Cells(1, 1).Value = “Report of Sales to “ & WhichCust

 ‘ Copy data from WSO to WSN
 WSO.Cells(1, NextCol + 2).CurrentRegion.Copy Destination:=WSN.Cells(3, 1)
 TotalRow = WSN.Cells(Rows.Count, 1).End(xlUp).Row + 1
 WSN.Cells(TotalRow, 1).Value = “Total”
 WSN.Cells(TotalRow, 2).FormulaR1C1 = “=SUM(R2C:R[-1]C)”
 WSN.Cells(TotalRow, 4).FormulaR1C1 = “=SUM(R2C:R[-1]C)”

 ‘ Format the new report with bold
 WSN.Cells(3, 1).Resize(1, 4).Font.Bold = True
 WSN.Cells(TotalRow, 1).Resize(1, 4).Font.Bold = True
 WSN.Cells(1, 1).Font.Size = 18

 WBN.SaveAs “C:\” & WhichCust & “.xls”
 WBN.Close SaveChanges:=False

 WSO.Select

 ‘ clear the output range, etc.
 Range(“J:Z”).Clear

End Sub

Figure 12.22
Immediately after the
advanced filter, you have
just the columns and
records needed for the
report.

Figure 12.23
After copying the filtered
data to a new sheet and
applying some format-
ting, you have a good-
looking report to send to
each customer.

Chapter 12 Data Mining with Advanced Filter280

The final advanced filter example for this chapter uses several advanced filter techniques. Let’s say that after importing

invoice records, you want to send a purchase summary to each customer. The process would be as follows:

 1. Run an advanced filter requesting unique values to get a list of customers in J. This AdvancedFilter specifies

the Unique:=True parameter and uses a CopyToRange that includes a single heading for Customer:

‘ Set up output range. Copy heading from D1 there
Range(“D1”).Copy Destination:=Cells(1, NextCol)
Set ORange = Cells(1, NextCol)

‘ Define the Input Range
Set IRange = Range(“A1”).Resize(FinalRow, NextCol - 2)

‘ Do the Advanced Filter to get unique list of customers
IRange.AdvancedFilter Action:=xlFilterCopy, CriteriaRange:=””, _
 CopyToRange:=ORange, Unique:=True

 2. For each customer in the list of unique customers in Column J, perform steps 3 through 7. Find the number of cus-

tomers in the output range from step 1. Then, use a For Each Cell loop to loop through the customers:

‘ Loop through each customer
FinalCust = Cells(Rows.Count, NextCol).End(xlUp).Row
For Each cell In Cells(2, NextCol).Resize(FinalCust - 1, 1)
 ThisCust = cell.Value
 ‘ ... Steps 3 through 7 here
Next Cell

 3. Build a criteria range in L1:L2 to be used in a new advanced filter. The criteria range would include a heading of

Customer in L1 and the customer name from this iteration of the loop in cell L2:

‘ Set up the Criteria Range with one customer
Cells(1, NextCol + 2).Value = Range(“D1”).Value
Cells(2, NextCol + 2).Value = ThisCust
Set CRange = Cells(1, NextCol + 2).Resize(2, 1)

 4. Do an advanced filter to copy matching records for this customer to Column N. This Advanced Filter state-

ment specifies the Unique:=False parameter. Because you want only the columns for Date, Quantity, Product,

and Revenue, the CopyToRange specifies a four-column range with those headings copied in the proper order:

‘ Set up output range. We want Date, Quantity, Product, Revenue
‘ These columns are in C, E, B, and F
Cells(1, NextCol + 4).Resize(1, 4).Value = _
 Array(Cells(1, 3), Cells(1, 5), Cells(1, 2), Cells(1, 6))
Set ORange = Cells(1, NextCol + 4).Resize(1, 4)

‘ Do the Advanced Filter to get unique list of customers & product
IRange.AdvancedFilter Action:=xlFilterCopy, CriteriaRange:=CRange, _
 CopyToRange:=Orange

C A S E S T U D Y : U T I L I Z I N G T W O K I N D S O F A D V A N C E D F I LT E R S T O
C R E A T E A R E P O R T F O R E A C H C U S T O M E R

281The Real Workhorse: xlFilterCopy with All Records Rather Than Unique Records Only

 5. Copy the customer records to a report sheet in a new workbook. The VBA code uses the Workbooks.Add method

to create a new blank workbook. The extracted records from step 4 are copied to Cell A3 of the new workbook:

‘ Create a new workbook with one blank sheet to hold the output
Set WBN = Workbooks.Add(xlWBATWorksheet)
Set WSN = WBN.Worksheets(1)

‘ Copy data from WSO to WSN
WSO.Cells(1, NextCol + 4).CurrentRegion.Copy _
 Destination:=WSN.Cells(3, 1)

 6. Format the report with a title and totals. In VBA, add a title that reflects the customer’s name in cell A1. Make the

headings bold and add a total below the final row:

‘ Set up a title on WSN
WSN.Cells(1, 1).Value = “Report of Sales to “ & ThisCust

TotalRow = WSN.Cells(Rows.Count, 1).End(xlUp).Row + 1
WSN.Cells(TotalRow, 1).Value = “Total”
WSN.Cells(TotalRow, 2).FormulaR1C1 = “=SUM(R2C:R[-1]C)”
WSN.Cells(TotalRow, 4).FormulaR1C1 = “=SUM(R2C:R[-1]C)”

‘ Format the new report with bold
WSN.Cells(3, 1).Resize(1, 4).Font.Bold = True
WSN.Cells(TotalRow, 1).Resize(1, 4).Font.Bold = True
WSN.Cells(1, 1).Font.Size = 18

 7. Use SaveAs to save the workbook based on customer name. After the workbook is saved, close the new workbook.

Return to the original workbook and clear the output range to prepare for the next pass through the loop:

WBN.SaveAs “C:\Reports\” & ThisCust & “.xls”
WBN.Close SaveChanges:=False

WSO.Select
‘ Free up memory by setting object variables to nothing
Set WSN = Nothing
Set WBN = Nothing
‘ clear the output range, etc.
Cells(1, NextCol + 2).Resize(1, 10).EntireColumn.Clear

The complete code is as follows:

Sub RunReportForEachCustomer()
 Dim IRange As Range
 Dim ORange As Range
 Dim CRange As Range
 Dim WBN As Workbook
 Dim WSN As Worksheet
 Dim WSO As Worksheet

 Set WSO = ActiveSheet
 ‘ Find the size of today’s dataset
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
 NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2
 ‘ First - get a unique list of customers in J
 ‘ Set up output range. Copy heading from D1 there

Chapter 12 Data Mining with Advanced Filter282

 Range(“D1”).Copy Destination:=Cells(1, NextCol)
 Set ORange = Cells(1, NextCol)

 ‘ Define the Input Range
 Set IRange = Range(“A1”).Resize(FinalRow, NextCol - 2)

 ‘ Do the Advanced Filter to get unique list of customers
 IRange.AdvancedFilter Action:=xlFilterCopy, CriteriaRange:=””, _
 CopyToRange:=ORange, Unique:=True

 ‘ Loop through each customer
 FinalCust = Cells(Rows.Count, NextCol).End(xlUp).Row
 For Each cell In Cells(2, NextCol).Resize(FinalCust - 1, 1)
 ThisCust = cell.Value

 ‘ Set up the Criteria Range with one customer
 Cells(1, NextCol + 2).Value = Range(“D1”).Value
 Cells(2, NextCol + 2).Value = ThisCust
 Set CRange = Cells(1, NextCol + 2).Resize(2, 1)

 ‘ Set up output range. We want Date, Quantity, Product, Revenue
 ‘ These columns are in C, E, B, and F
 Cells(1, NextCol + 4).Resize(1, 4).Value = _
 Array(Cells(1, 3), Cells(1, 5), Cells(1, 2), Cells(1, 6))
 Set ORange = Cells(1, NextCol + 4).Resize(1, 4)

 ‘ Do the Advanced Filter to get unique list of customers & product
 IRange.AdvancedFilter Action:=xlFilterCopy, CriteriaRange:=CRange, _
 CopyToRange:=ORange

 ‘ Create a new workbook with one blank sheet to hold the output
 Set WBN = Workbooks.Add(xlWBATWorksheet)
 Set WSN = WBN.Worksheets(1)
 ‘ Copy data from WSO to WSN
 WSO.Cells(1, NextCol + 4).CurrentRegion.Copy _
 Destination:=WSN.Cells(3, 1)

 ‘ Set up a title on WSN
 WSN.Cells(1, 1).Value = “Report of Sales to “ & ThisCust

 TotalRow = WSN.Cells(Rows.Count, 1).End(xlUp).Row + 1
 WSN.Cells(TotalRow, 1).Value = “Total”
 WSN.Cells(TotalRow, 2).FormulaR1C1 = “=SUM(R2C:R[-1]C)”
 WSN.Cells(TotalRow, 4).FormulaR1C1 = “=SUM(R2C:R[-1]C)”

 ‘ Format the new report with bold
 WSN.Cells(3, 1).Resize(1, 4).Font.Bold = True
 WSN.Cells(TotalRow, 1).Resize(1, 4).Font.Bold = True
 WSN.Cells(1, 1).Font.Size = 18

 WBN.SaveAs “C:\Reports\” & ThisCust & “.xlsx”
 WBN.Close SaveChanges:=False
 WSO.Select
 Set WSN = Nothing

283Using Filter in Place with Unique Records Only

Using Filter in Place with Unique Records Only
It is possible to use Filter in Place and Unique Records Only. Only columns that should be

evaluated for unique combinations of values should be specified as the input range.

In Figure 12.24, the dataset has a common problem: Each account number appears with

many different spellings of the customer name. You would like a unique list of customer

numbers. For each unique customer number, you would like to include any of the various

spellings for that customer.

 Set WBN = Nothing

 ‘ clear the output range, etc.
 Cells(1, NextCol + 2).Resize(1, 10).EntireColumn.Clear
 Next cell

 Cells(1, NextCol).EntireColumn.Clear
 MsgBox FinalCust - 1 & “ Reports have been created!”
End Sub

This is a remarkable 45 lines of code. Incorporating a couple of advanced filters and not much else, you have managed to

produce a tool that created 27 reports in less than 1 minute. Even an Excel power user would normally take 2 to 3 minutes

per report to create these manually. In less than 60 seconds, this code will save someone a few hours every time these

reports need to be created. Imagine the real scenario where there are hundreds of customers. Undoubtedly, there are

people in every city who are manually creating these reports in Excel because they simply don’t realize the power of Excel

VBA.

Figure 12.24
Each account number
has various variations of
customer name.

To solve this problem, you can specify Column C as the input range, filter in place, and ask

for unique records using this code:

FinalRow = Cells(Rows.Count, 4).End(xlUp).Row
Range(“C1”).Resize(FinalRow, 1).AdvancedFilter _
 Action:=xlFilterInPlace, _
 Unique:=True

Chapter 12 Data Mining with Advanced Filter284

Figure 12.25 shows the result: Each account number appears just once.

Figure 12.25
Because Column C was
the input range, you only
see one line per customer
number.

Column D contains the first instance of each customer name. To copy those results to

another place, use this code.

Range(“C1”).Resize(FinalRow, 2).Copy _
 Destination:=Worksheets(“Customers”).Range(“A1”)
ActiveSheet.ShowAllData

Figure 12.26 shows a unique list of customer numbers with the first customer name found

for each customer number. This is significantly different than using Remove Duplicates on

Customer Number and Customer. That command would show each variant of spelling of

the customer name as a new row.

Figure 12.26
A unique list of customer
numbers, along with one
of the spellings of the
customer name.

285Next Steps

Excel in Practice: Turning Off a Few Drop-Downs in the AutoFilter
One cool feature is available only in Excel VBA. When you AutoFilter a list in the Excel

user interface, every column in the dataset gets a field drop-down in the heading row.

Sometimes you have a field that does not make a lot of sense to AutoFilter. For example,

in your current dataset, you might want to provide AutoFilter drop-downs for Region,

Product, Customer, but not the numeric or date fields. After setting up the AutoFilter, you

need one line of code to turn off each drop-down that you do not want to appear. The fol-

lowing code turns off the drop-downs for Columns C, E, F, G, and H:

Sub AutoFilterCustom()
 Range(“A1”).AutoFilter Field:=3, VisibleDropDown:=False
 Range(“A1”).AutoFilter Field:=5, VisibleDropDown:=False
 Range(“A1”).AutoFilter Field:=6, VisibleDropDown:=False
 Range(“A1”).AutoFilter Field:=7, VisibleDropDown:=False
 Range(“A1”).AutoFilter Field:=8, VisibleDropDown:=False
End Sub

Using this tool is a fairly rare treat. Most of the time, Excel VBA lets you to do things

that are possible in the user interface—although it lets us do them very rapidly. The

VisibleDropDown parameter actually enables you to do something in VBA that is generally

not available in the Excel user interface. Your knowledgeable clients will be scratching their

heads trying to figure out how you set up the cool auto filter with only a few filterable col-

umns (see Figure 12.27).

Figure 12.27
Using VBA, you can set up
an auto filter where only
certain columns have the
AutoFilter drop-down.

To clear the filter from the customer column, you use this code:

Sub SimpleFilter()
 Worksheets(“SalesReport”).Select
 Range(“A1”).AutoFilter
 Range(“A1”).AutoFilter Field:=4
End Sub

Introducing Pivot Tables
Pivot tables are the most powerful tools that Excel

has to offer. The concept was first put into practice

by Lotus with its Improv product.

I love pivot tables because they are a fast way to

summarize massive amounts of data. The name

pivot table comes from the ability you have to drag

fields in the drop zones and have them recalculate.

You can use the basic vanilla pivot table to produce

a concise summary in seconds. However, pivot

tables come in so many flavors that they can be the

tools of choice for many different uses. You can

build pivot tables to act as the calculation engine to

produce reports by store, by style, or to quickly find

the top 5 or bottom 10 of anything.

I am not suggesting you use VBA to build pivot

tables to give to your user. I am suggesting you use

pivot tables as a means to an end—use a pivot table

to extract a summary of data and then take this

summary on to better uses.

Understanding Versions
As Microsoft invests in making Excel the premier

choice in business intelligence, pivot tables con-

tinue to evolve. They were introduced in Excel

5 and perfected in Excel 97. In Excel 2000, pivot

table creation in VBA was dramatically altered.

Some new parameters were added in Excel 2002.

A few new properties such as PivotFilters and

TableStyle2 were added in Excel 2007. Slicers and

new choices for Show Values As were added in

Excel 2010. Therefore, you need to be extremely

careful when writing code in Excel 2010 that might

be run in legacy versions.

Using VBA to Create Pivot
Tables

13

Chapter 13 Using VBA to Create Pivot Tables288

Much of the code in this chapter is backward-compatible all the way to Excel 2000. Pivot

table creation in Excel 97 required using the PivotTableWizard method. Although this book

will not include code for Excel 97, one example has been included in the sample file for this

chapter.

New in Excel 2010
Excel 2010 offers many new features in pivot tables. If you use any of these features in

VBA, the code will work in Excel 2010 but crash in any legacy versions of Excel.

Table 13.1 shows items that are available in Excel 2010 VBA for pivot tables.

The items included in Table 13.1 will cause incompatibilities when run in Excel 2007.

N
O

T
E

Table 13.1 Properties and Methods New in Excel 2010

Feature Properties and Methods

Slicers Anything with the word Slicer will not work in Excel 2007, including SlicerCaches,
Slicers, and SlicerItems.

Write-Back You can write-back to OLAP datasets. Properties include
AllocateChanges, Allocation, AllocationMethod, AllocationValue,
AllocationWeightExpression, ChangeList, and EnableWriteback.
Methods include AllocateChanges, CommitChanges, DiscardChanges,
RefreshDataSourceValues. Objects include PivotTableChangeList.
Also, PivotCell.AllocateChange, PivotCell.CellChanged, PivotCell.
DataSourceValue, PivotCell.DiscardChange, PivotCell.MDX.

Repeat Labels RepeatAllLabels method, RepeatLabels property.

Sets AlternativeText, CalculatedMembersInFilters, DisplayContextTooltips,
ShowValuesRow, Summary, VisualTotalsForSets.

Show Values As These values from xlPivotFieldCalculation are new in Excel 2010: xlPercen-
tOfParentColumn, xlPercentOfParentRow, xlPercentRunningTotal, xlRankAs-
cending, xlRankDescending.

New Beginning with Excel 2007
If there is some chance that your code will run in Excel 2003, there are even more possible

incompatibilities. Many concepts on the Design tab, such as subtotals at the top, the report

layout options, blank rows, and the new pivot table styles, were introduced in Excel 2007.

Excel 2007 offered better filters than legacy versions of Excel. Every new feature adds one

or more methods or properties to VBA.

289Understanding Versions

Table 13.2 shows the methods that were added in Excel 2007. If you record a macro that

uses these methods, you cannot share the macro with someone using a legacy version of

Excel.

Table 13.2 Methods That Were New in Excel 2007

Method Description

ClearAllFilters Clears all filters in the pivot table.

ClearTable Removes all fields from the pivot table but keeps the pivot table intact.

ConvertToFormulas Converts a pivot table to cube formulas. This method is valid only for pivot
tables based on OLAP data sources.

DisplayAllMember Equivalent to Options, Display, Show Properties PropertiesInTooltip in
ToolTips.

RowAxisLayout Changes the layout for all fields in the row area. Valid values are xlCompac-
tRow, xlTabularRow, or xlOutlineRow.

SubtotalLocation Controls whether subtotals appear at the top or bottom of each group. Valid
arguments are xlAtTop or xlAtBottom.

Table 13.3 lists the properties that were new in Excel 2007. If you record a macro that

refers to these properties, you cannot share the macro with someone using a legacy version

of Excel.

Table 13.3 Properties That Were New in Excel 2007

Property Description

ActiveFilters Indicates the active filters in the pivot table; this is a read-only
property.

AllowMultipleFilters Indicates whether a pivot field can have multiple filters applied to
it at the same time.

CompactLayoutColumnHeader Specifies the caption that is displayed in the column header of a
pivot table when in compact row layout form.

CompactLayoutRowHeader Specifies the caption that displays in the row header of a pivot
table when in compact row layout form.

If you expect to share your pivot table macro with people running legacy versions of Excel, you need

to avoid these methods. Your best bet is to open an Excel 2003 workbook in Compatibility mode and

record the macro while the workbook is in Compatibility mode.

C A U T I O N

Chapter 13 Using VBA to Create Pivot Tables290

Property Description

CompactRowIndent Indicates the indent increment for pivot items when compact row
layout form is turned on.

DisplayContextTooltips Controls whether ToolTips display for pivot table cells.

DisplayFieldCaptions Controls whether filter buttons and pivot field captions for rows
and columns display in the grid.

DisplayMemberPropertyTooltips Controls whether to display member properties in ToolTips.

FieldListSortAscending Controls the sort order of fields in the PivotTable Field List.
When this property is True, the fields are sorted in alphabetic
order. When it is set to False, the fields are presented in the
same sequence as the data source columns.

InGridDropZones Controls whether you can drag and drop fields onto the grid.
Changing the pivot table layout also changes this property.
Changing this property forces the layout back to a table layout.

LayoutRowDefault Specifies the layout settings for pivot fields when they are added
to the pivot table for the first time. Valid values are xlCompac-
tRow, xlTabularRow, or xlOutlineRow.

PivotColumnAxis Returns a PivotAxis object representing the entire column axis.

PivotRowAxis Returns a PivotAxis object representing the entire row axis.

PrintDrillIndicators Specifies whether drill indicators are printed with the pivot table.

ShowDrillIndicators Specifies whether drill indicators are shown in the pivot table.

ShowTableStyleColumnHeaders Controls whether table style 2 should affect the column headers.

ShowTableStyleColumnStripes Controls whether table style 2 should show banded columns.

ShowTableStyleLastColumn Controls whether table style 2 should format the final column.

ShowTableStyleRowHeaders Controls whether table style 2 should affect the row headers.

ShowTableStyleRowStripes Controls whether table style 2 should show banded columns.

SortUsingCustomLists Controls whether custom lists are used for sorting items of fields,
both initially and later when applying a sort. Setting this property
to False can optimize performance for fields with many items
and allows you to avoid using custom-list-based sorting.

TableStyle2 Specifies the pivot table style currently applied to the pivot table.
Note that previous versions of Excel offered a weak AutoFormat
option. That feature’s settings were held in the TableStyle
property, so Microsoft had to use TableStyle2 as the property
name for the new pivot table styles. The property might have a
value such as PivotStyleLight17.

Creating a Vanilla Pivot Table in the Excel Interface

Table 13.3 Continued

Even though pivot tables are the most powerful feature in Excel, Microsoft estimates they

are used by only 7 percent of Excel users overall.

291Creating a Vanilla Pivot Table in the Excel Interface

42 percent of advanced Excel users have used pivot tables. Because a significant portion of

Excel users has not used pivot tables, this section walks through the steps of building a pivot

table in the user interface.

If you are already a pivot table pro, jump ahead to the next section.

N
O

T
E

Let’s say you have 5,000 or 500,000 rows of data, as shown in Figure 13.1. You want a sum-

mary of revenue by region and product. Regions should go down the side, products across

the top.

Figure 13.1
If you need to summarize
500,000 rows of trans-
actional data quickly, a
pivot table can do so in
seconds. Your goal is to
produce a summary of
revenue by region and
product.

To build the pivot table to the right of the data, follow these steps:

 1. Select a single cell in the transaction data. Select the PivotTable icon from the Insert

tab. Excel displays the Create PivotTable dialog.

 2. Verify that Excel filled in the proper address for the table range. Provided your data

has no completely blank rows or blank columns, this address is usually correct.

 3. Select to create the pivot table on an existing worksheet. Click the Location reference

box and select Cell J1, as shown in Figure 13.2.

Figure 13.2
Verify that Excel selected
the correct data and
specify a location for the
pivot table.

Chapter 13 Using VBA to Create Pivot Tables292

 4. Click OK to create a blank pivot table. Instructions in the blank pivot table tell you to

choose fields from the PivotTable Field List. The PivotTable Field List appears at the

right side of your screen. A list of available fields is in the top of the task pane. The fol-

lowing four drop zones appear at the bottom of the task pane: Report Filter, Column

Labels, Row Labels, and Values (see Figure 13.3).

Figure 13.3
Excel presents you with a
list of available fields and
four drop zones in the
PivotTable Field List.

 5. Click the Region and Revenue fields in the top section of the PivotTable Field List.

Because the region field contains text data, it is automatically moved to the Row Labels

drop zone. Because Revenue contains numeric data, it is automatically moved to the

Values drop zone.

 6. Click the Product field in the top section of the PivotTable Field List and drag to the

Column Labels drop zone in the bottom half of the PivotTable Field List. This adds a

list of products stretching across the top row of your pivot table.

Excel has built a concise summary of your data in the pivot table, as shown in Figure 13.4.

After a pivot table has been created on your worksheet, you can easily change the data sum-

marized in the report by dragging fields within the drop zones of the PivotTable Field List.

In Figure 13.5, Customer was added to the Row Labels section of the existing pivot table.

293Creating a Vanilla Pivot Table in the Excel Interface

Understanding Compact Layout
Beginning with Excel 2007, all pivot tables created in the Excel interface are created in a

new layout called Compact Form. In this layout, multiple Row fields appear in a single col-

umn at the left of the pivot table. Excel also puts the subtotals above the detail rows.

Although these changes might make for a better live pivot table, most of the pivot tables in

this chapter will be converted to values to produce a static summary of the data. In these

cases, you want to perform the following steps in the user interface:

 1. On the Design tab, select Report Layout, Show in Tabular Form, and then select

Repeat All Item Labels.

 2. On the Design tab, select Subtotals, Do Not Show Subtotals.

Figure 13.4
Only six clicks were
required to create this
summary.

Figure 13.5
In a couple of clicks, you
can move Region across
the top, move Product
down the side, and add a
summary by Customer.

Chapter 13 Using VBA to Create Pivot Tables294

 3. On the Options tab, select the Options icon on the left side of the ribbon. In the

Layout & Format tab of the PivotTable Options dialog, type a 0 next to For Empty

Cells Show.

 4. On the Design tab, select Grand Totals, Off for Rows and Columns.

After implementing these changes, you will have a solid, contiguous block of data, as shown

in Figure 13.6.

Figure 13.6
If you plan to reuse the
output of the pivot table
for further analysis, a few
changes to the default
settings are required.

Building a Pivot Table in Excel VBA
This chapter does not mean to imply that you should use VBA to build pivot tables to give

to your clients. Instead, the purpose of this chapter is to remind you that pivot tables can be

used as a means to an end; you can use a pivot table to extract a summary of data and then

use that summary elsewhere.

Although the Excel user interface has new names for the various sections of a pivot table, VBA code

continues to refer to the old names. Microsoft had to use this choice; otherwise, millions of lines of

code would stop working in Excel 2007 when they referred to a page field rather than a filter field.

Although the four sections of a pivot table in the Excel user interface are Report Filter, Column Labels,

Row Labels, and Values, VBA continues to use the old terms of Page fields, Column fields, Row fields,

and Data fields.

C A U T I O N

http://www.MrExcel.com/getcode2010.html
http://www.MrExcel.com/getcode2010.html

295Building a Pivot Table in Excel VBA

Defining the Pivot Cache
In Excel 2000 and later, you first build a pivot cache object to describe the input area of the

data:

Dim WSD As Worksheet
Dim PTCache As PivotCache
Dim PT As PivotTable
Dim PRange As Range
Dim FinalRow As Long
Dim FinalCol As Long
Set WSD = Worksheets(“PivotTable”)

‘ Delete any prior pivot tables
For Each PT In WSD.PivotTables
 PT.TableRange2.Clear
Next PT

‘ Define input area and set up a Pivot Cache
FinalRow = WSD.Cells(Rows.Count, 1).End(xlUp).Row
FinalCol = WSD.Cells(1, Columns.Count).End(xlToLeft).Column
Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)
Set PTCache = ActiveWorkbook.PivotCaches.Add(SourceType:=xlDatabase, _
 SourceData:=PRange)

Creating and Configuring the Pivot Table
After defining the pivot cache, use the CreatePivotTable method to create a blank pivot

table based on the defined pivot cache:

Set PT = PTCache.CreatePivotTable(TableDestination:=WSD.Cells(2, _
FinalCol + 2), TableName:=”PivotTable1”)

In the CreatePivotTable method, you specify the output location and optionally give the

table a name. After running this line of code, you have a strange-looking blank pivot table,

like the one shown in Figure 13.7. You now have to use code to drop fields onto the table.

Figure 13.7
When you use the
CreatePivotTable
method, Excel gives you a
four-cell blank pivot table
that is not very useful.

If you choose the Defer Layout Update setting in the user interface to build the pivot

table, Excel does not recalculate the pivot table after you drop each field onto the table.

By default in VBA, Excel calculates the pivot table as you execute each step of building the

table. This could require the pivot table to be executed a half-dozen times before you get

the final result. To speed up your code execution, you can temporarily turn off calculation

of the pivot table by using the ManualUpdate property:

PT.ManualUpdate = True

Chapter 13 Using VBA to Create Pivot Tables296

You can now run through the steps needed to lay out the pivot table. In the .AddFields

method, you can specify one or more fields that should be in the row, column, or filter area

of the pivot table.

The RowFields parameter enables you to define fields that appear in the Row Labels drop

zone of the PivotTable Field List. The ColumnFields parameter corresponds to the Column

Labels drop zone. The PageFields parameter corresponds to the Report Filter drop zone.

The following line of code populates a pivot table with two fields in the row area and one

field in the column area:

‘ Set up the row & column fields
PT.AddFields RowFields:=Array(“Region”, “Customer”), _
 ColumnFields:=”Product”

To add a field such as Revenue to the values area of the table, you change the Orientation

property of the field to be xlDataField.

Adding Fields to the Data Area
When you are adding fields to the Data area of the pivot table, there are many settings you

should control instead of letting Excel’s intellisense decide.

For example, say you are building a report with revenue in which you will likely want to

sum the revenue. If you don’t explicitly specify the calculation, Excel scans through the data

in the underlying data. If 100 percent of the revenue columns are numeric, Excel will sum

those columns. If one cell is blank or contains text, Excel will decide on that day to count

the revenue, which will produce confusing results.

Because of this possible variability, you should never use the DataFields argument in the

AddFields method. Instead, change the property of the field to xlDataField. You can then

specify the Function to be xlSum.

While you are setting up the data field, you can change several other properties within the

same With...End With block.

The Position property is useful when adding multiple fields to the data area. Specify 1 for

the first field, 2 for the second field, and so on.

By default, Excel will rename a Revenue field to have a strange name like Sum of Revenue.

You can use the .Name property to change that heading back to something normal.

Note that you cannot reuse the word “Revenue” as a name. Instead, you should use “Revenue ” (with a

space).

T
IP

You are not required to specify a number format, but it can make the resulting pivot table

easier to understand, and only takes an extra line of code.

297Building a Pivot Table in Excel VBA

 ‘ Set up the data fields
With PT.PivotFields(“Revenue”)
 .Orientation = xlDataField
 .Function = xlSum
 .Position = 1
 .NumberFormat = “#,##0”
 .Name = “Revenue “
End With

At this point, you have given VBA all the settings required to generate the pivot table cor-

rectly. If you set ManualUpdate to False, Excel calculates and draws the pivot table. You can

immediately thereafter set this back to True:

‘ Calc the pivot table
PT.ManualUpdate = False
PT.ManualUpdate = True

Your pivot table inherits the table style settings selected as the default on whatever com-

puter happens to run the code. If you want control over the final format, you can explicitly

choose a table style. The following code applies banded rows and a medium table style:

‘ Format the pivot table
PT.ShowTableStyleRowStripes = True
PT.TableStyle2 = “PivotStyleMedium10”

If you want to reuse the data from the pivot table, turn off the grand totals and subtotals

and fill in the labels along the left column. For an explanation of why this code turns off the

subtotals, see “Suppressing Subtotals for Multiple Row Fields” near the end of this chapter.

With PT
 .ColumnGrand = False
 .RowGrand = False
 .RepeatAllLabels xlRepeatLabels ‘ New in Excel 2010
End With
PT.PivotFields(“Region”).Subtotals(1) = True
PT.PivotFields(“Region”).Subtotals(1) = False

At this point, you have a complete pivot table like the one shown in Figure 13.8.

Figure 13.8
Fewer than 50 lines of
code created this pivot
table in less than a
second.

Chapter 13 Using VBA to Create Pivot Tables298

Listing 13.1 shows the complete code used to generate the pivot table.

Listing 13.1 Code to Generate a Pivot Table

Sub CreatePivot()
 Dim WSD As Worksheet
 Dim PåTCache As PivotCache
 Dim PT As PivotTable
 Dim PRange As Range
 Dim FinalRow As Long
 Set WSD = Worksheets(“PivotTable”)

 ‘ Delete any prior pivot tables
 For Each PT In WSD.PivotTables
 PT.TableRange2.Clear
 Next PT

 ‘ Define input area and set up a Pivot Cache
 FinalRow = WSD.Cells(Application.Rows.Count, 1).End(xlUp).Row
 FinalCol = WSD.Cells(1, Application.Columns.Count). _
 End(xlToLeft).Column
 Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)
 Set PTCache = ActiveWorkbook.PivotCaches.Add(SourceType:= _
 xlDatabase, SourceData:=PRange.Address)

 ‘ Create the Pivot Table from the Pivot Cache
 Set PT = PTCache.CreatePivotTable(TableDestination:=WSD. _
 Cells(2, FinalCol + 2), TableName:=”PivotTable1”)

 ‘ Turn off updating while building the table
 PT.ManualUpdate = True

 ‘ Set up the row & column fields
 PT.AddFields RowFields:=Array(“Region”, “Customer”), _
 ColumnFields:=”Product”

 ‘ Set up the data fields
 With PT.PivotFields(“Revenue”)
 .Orientation = xlDataField
 .Function = xlSum
 .Position = 1
 .NumberFormat = “#,##0”
 .Name = “Revenue “
 End With

 ‘ Calc the pivot table
 PT.ManualUpdate = False
 PT.ManualUpdate = True

 ‘Format the pivot table
 PT.ShowTableStyleRowStripes = True
 PT.TableStyle2 = “PivotStyleMedium10”
 With PT
 .ColumnGrand = False
 .RowGrand = False
 .RepeatAllLabels xlRepeatLabels ‘ New in Excel 2010
 End With

299Building a Pivot Table in Excel VBA

 PT.PivotFields(“Region”).Subtotals(1) = True
 PT.PivotFields(“Region”).Subtotals(1) = False
 WSD.Activate
 Range(“J2”).Select

End Sub

Learning Why You Cannot Move or Change Part of a Pivot Report
Although pivot tables are incredible, they have annoying limitations; for example, you can-

not move or change just part of a pivot table. Try to run a macro that clears Row 2. The

macro comes to a screeching halt with an error 1004, as shown in Figure 13.9. To get

around this limitation, you can copy the pivot table and paste as values.

Figure 13.9
You cannot delete just
part of a pivot table.

Determining Size of a Finished Pivot Table to Convert the Pivot Table to Values
Knowing the size of a pivot table in advance is difficult. If you run a report of transactional

data on one day, you may or may not have sales from the West region, for example. This

could cause your table to be either six or seven columns wide. Therefore, you should use

the special property TableRange2 to refer to the entire resultant pivot table.

PT.TableRange2 includes the entire pivot table. In Figure 13.10, TableRange2 includes

the extra row at the top with the button Sum of Revenue. To eliminate that row, the

code copies PT.TableRange2 but offsets this selection by one row by using .Offset(1, 0).

Depending on the nature of your pivot table, you might need to use an offset of two or

more rows to get rid of extraneous information at the top of the pivot table.

The code copies PT.TableRange2 and uses PasteSpecial on a cell five rows below the cur-

rent pivot table. At that point in the code, your worksheet appears as shown in Figure

13.10. The table in J2 is a live pivot table, and the table in J12 is just the copied results.

Chapter 13 Using VBA to Create Pivot Tables300

You can then eliminate the pivot table by applying the Clear method to the entire table. If

your code is then going on to do additional formatting, you should remove the pivot cache

from memory by setting PTCache equal to Nothing.

The code in Listing 13.2 uses a pivot table to produce a summary from the underlying data.

At the end of the code, the pivot table will be copied to static values and the pivot table will

be cleared.

Listing 13.2 Code to Produce a Static Summary from a Pivot Table

Sub CreateSummaryReportUsingPivot()
 ‘ Use a Pivot Table to create a static summary report
 ‘ with product going down the rows and regions across
 Dim WSD As Worksheet
 Dim PTCache As PivotCache
 Dim PT As PivotTable
 Dim PRange As Range
 Dim FinalRow As Long
 Set WSD = Worksheets(“PivotTable”)

 ‘ Delete any prior pivot tables
 For Each PT In WSD.PivotTables
 PT.TableRange2.Clear
 Next PT
 WSD.Range(“J1:Z1”).EntireColumn.Clear

 ‘ Define input area and set up a Pivot Cache
 FinalRow = WSD.Cells(Application.Rows.Count, 1).End(xlUp).Row
 FinalCol = WSD.Cells(1, Application.Columns.Count). _
 End(xlToLeft).Column
 Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)
 Set PTCache = ActiveWorkbook.PivotCaches.Add(SourceType:= _
 xlDatabase, SourceData:=PRange.Address)

 ‘ Create the Pivot Table from the Pivot Cache

Exclude top row using Offset.

Copied range includes extra row.

Figure 13.10
This figure shows an
intermediate result of the
macro. Only the summary
in J12:M17 will remain
after the macro finishes.

301Building a Pivot Table in Excel VBA

 Set PT = PTCache.CreatePivotTable(TableDestination:=WSD. _
 Cells(2, FinalCol + 2), TableName:=”PivotTable1”)

 ‘ Turn off updating while building the table
 PT.ManualUpdate = True

 ‘ Set up the row fields
 PT.AddFields RowFields:=”Product”, ColumnFields:=”Region”

 ‘ Set up the data fields
 With PT.PivotFields(“Revenue”)
 .Orientation = xlDataField
 .Function = xlSum
 .Position = 1
 .NumberFormat = “#,##0”
 .Name = “Revenue “
 End With

 With PT
 .ColumnGrand = False
 .RowGrand = False
 .NullString = “0”
 End With

 ‘ Calc the pivot table
 PT.ManualUpdate = False
 PT.ManualUpdate = True

 ‘ PT.TableRange2 contains the results. Move these to J12
 ‘ as just values and not a real pivot table.
 PT.TableRange2.Offset(1, 0).Copy
 WSD.Cells(5 + PT.TableRange2.Rows.Count, FinalCol + 2). _
 PasteSpecial xlPasteValues

 ‘ At this point, the worksheet looks like Figure 13.10
 ‘ Stop

 ‘ Delete the original Pivot Table & the Pivot Cache
 PT.TableRange2.Clear
 Set PTCache = Nothing

 WSD.Activate
 Range(“J12”).Select
End Sub

The code in Listing 13.2 creates the pivot table. It then copies the results and pastes them

as values in J12:M13. Figure 13.10, which was shown previously, includes an intermediate

result just before the original pivot table is cleared.

So far, this chapter has walked you through building the simplest of pivot table reports.

Pivot tables offer far more flexibility. The sections that follow present more complex

reporting examples.

Chapter 13 Using VBA to Create Pivot Tables302

Using Advanced Pivot Table Features
In this section, you will take the detailed transactional data and produce a series of reports

for each product line manager. This section covers the following advanced pivot table fea-

tures that are required in these reports:

 ■ Group the daily dates up to yearly dates

 ■ Add multiple fields to the value area

 ■ Control the sort order so the largest customers are listed first

 ■ Use the ShowPages feature to replicate the report for each product line manager

 ■ After producing the pivot tables, convert the pivot table to values and do some basic

formatting

Figure 13.11 shows the report for one product line manager so that you can understand the

final goal.

Figure 13.11
Using pivot tables simpli-
fies the creation of the
report.

Using Multiple Value Fields
The report has three fields in the values area; Count of Orders, Revenue, and % of Total

Revenue. Anytime you have two or more fields in the values area, a new virtual field named

Data becomes available in your pivot table.

In Excel 2010, this field appears as sigma values in the drop zone of the Pivot Table Field

List. When creating your pivot table, you can specify Data as one of the column fields or

row fields.

The position of the Data field is important. It usually works best as the innermost column

field.

When you define your pivot table in VBA, you will have two columns fields: the Date field

and the Data field. To specify two or more fields in the AddFields method, you wrap those

fields in an array function.

Use this code to define the pivot table:

‘ Set up the row fields
PT.AddFields RowFields:=”Customer”, _
 ColumnFields:=Array(“Date”, “Data”), _
 PageFields:=”Product”

303Using Advanced Pivot Table Features

This is the first time you have seen the PageFields parameter in this chapter. If you were

creating a pivot table for someone to use, the fields in the PageField allow for easy ad hoc

analysis. In this case, the value in the PageField is going to make it easy to replicate the

report for every product line manager.

Counting the Number of Records
So far, the .Function property of the data fields has always been .xlSum. There are a total of

11 functions available: xlSum, xlCount, xlAverage, xlStdDev, xlMin, xlMax, and so on.

Count is the only function that works for text fields. To count the number of records, and

hence the number of orders, add a text field to the data area and choose .xlCount as the

function.

With PT.PivotFields(“Region”)
 .Orientation = xlDataField
 .Function = xlCount
 .Position = 1
 .NumberFormat = “#,##0”
 .Name = “# of Orders “
End With

This is a count of the number of records. It is not a count of the distinct values in a field. This has

always been difficult to do in a pivot table. It is now fairly easy to do with the PowerPivot add-in.

Unfortunately, you cannot use VBA to build a PowerPivot pivot table.

C A U T I O N

Grouping Daily Dates to Months, Quarters, or Years
Pivot tables have the amazing ability to group daily dates up to months, quarters, and/or

years. In VBA, this feature is a bit annoying because you must select a date cell before issu-

ing the command. As you saw in Figure 13.10, your pivot table usually stays as four blank

cells until the end of the macro, so there really is not a date field to select.

However, if you need to group a date field, you will have to let the pivot table redraw. To

do this, use this code:

‘ Pause here to group daily dates up to years
‘ Need to draw the pivot table so you can select date heading
PT.ManualUpdate = False
PT.ManualUpdate = True

I used to go through all sorts of gyrations to figure out where the first date field was. In fact, you can

simply refer to PT.PivotFields(“Date”).LabelRange to point to the date heading.

T
IP

Chapter 13 Using VBA to Create Pivot Tables304

There are seven ways to group times or dates: Seconds, Minutes, Hours, Days, Months,

Quarters, and Years. Note that you can group a field by multiple items. You specify a series

of seven True/False values corresponding to Seconds, Minutes, and so on.

For example, to group by Months, Quarters, and Years, you would use the following:

PT.PivotFields(“Date”).LabelRange.Group , Periods:= _
 Array(False, False, False, False, True, True, True)

Never choose to group by only months without including years. If you do this, Excel combines January

from this year and January from last year into a single item called January. Although this is great for

seasonality analyses, it is rarely what you want in a summary. Always choose Years and Months in the

Grouping dialog.

C A U T I O N

If you want to group by week, you group only by day and use 7 as the value for the By

parameter:

PT.PivotFields(“Date”).LabelRange.Group _
 Start:=True, End:=True, By:=7, _
 Periods:=Array(False, False, False, True, False, False, False)

Specifying True for Start and End will start the first week at the earliest date in the data.

If you only want to show weeks starting from Monday January 3, 2011 through Sunday

January 1, 2012, use this code:

With PT.PivotFields(“Date”)
 .LabelRange.Group _
 Start:=DateSerial(2011, 1, 3), _
 End:=DateSerial(2012, 1, 1), _
 By:=7, _
 Periods:=Array(False, False, False, True, False, False, False)
 On Error Resume Next
 .PivotItems(“<1/3/2011”).Visible = False
 .PivotItems(“>1/1/2012”).Visible = False
 On Error Goto 0
End With

To see a demo of grouping by week, search for Excel VBA 13 at YouTube.

There is one limitation to grouping by week. When you group by week, you cannot also group by any

other measure. For example, grouping by week and quarter is not valid.

C A U T I O N

For this report, you only need to group by year, so the code is as follows:

‘ Group daily dates up to years
PT.PivotFields(“Date”).LabelRange.Group , Periods:= _
 Array(False, False, False, False, False, False, True)

305Using Advanced Pivot Table Features

Figure 13.12 shows the report before grouping the dates up to years. Figure 13.13 shows

the report after grouping to years.

Before grouping the daily dates up to years, you had about 500 date columns across this report. After

grouping, you have two date columns plus a total. I prefer to group the dates as soon as possible in

the macro. If you added the other two data fields to the report before grouping, your report would be

1500 columns wide. While this is not a problem since Excel 2007 increased the column limit from 256

to 16,384, it still creates an unusually large report when you ultimately only need a few columns.

C A U T I O N

Figure 13.12
Five hundred daily dates
stretch across the report.

Changing the Calculation to Show Percentages
Excel 2010 offers a new Show Values As drop-down in the Options tab. Although some of

the options in that drop-down are truly new to Excel 2010, most of the options have been

hidden away on a back tab of the Field Settings dialog.

These calculations allow you to change how a field is displayed in the report. Instead of

showing sales, you could show the sales as a percentage of the total sales. You could show a

running total. You could show each day’s sales as a percentage of the previous day’s sales.

Figure 13.13
After one line of code,
the dates are rolled up
to years.

After you issue this command, the years field is still called Date. This may not always be true. If you roll

daily dates up to months and to years, the Date field will contain months, and a new Year field will be

added to the field list to hold years.

N
O

T
E

Chapter 13 Using VBA to Create Pivot Tables306

All these settings are controlled through the .Calculation property of the pivot field. Each

calculation has its own unique set of rules. Some, such as % of column, work without any

further settings. Others, such as Running Total In, require a base field. Others, such as run-

ning total, require a base field and a base item.

To get the percentage of the total, specify xlPercentOfTotal as the .Calculation property

for the page field:

.Calculation = xlPercentOfTotal

To set up a running total, you have to specify a BaseField. Say that you need a running

total along a date column:

‘ Set up Running Total
 .Calculation = xlRunningTotal
 .BaseField = “Date”

With ship months going down the columns, you might want to see the percentage of rev-

enue growth from month to month. You can set up this arrangement with the xlPercent-

DifferenceFrom setting. In this case, you must specify that the BaseField is “Date” and that

the BaseItem is something called (previous):

‘ Set up % change from prior month
With PT.PivotFields(“Revenue”)
 .Orientation = xlDataField
 .Function = xlSum
 .Caption = “%Change”
 .Calculation = xlPercentDifferenceFrom
 .BaseField = “Date”
 .BaseItem = “(previous)”
 .NumberFormat = “#0.0%”
End With

Note that with positional calculations, you cannot use the AutoShow or AutoSort method.

This is too bad; it would be interesting to sort the customers high to low and to see their

sizes in relation to each other.

You can use the xlPercentDifferenceFrom setting to express revenues as a percentage of the

West region sales:

‘ Show revenue as a percentage of California
With PT.PivotFields(“Revenue”)
 .Orientation = xlDataField
 .Function = xlSum
 .Caption = “% of West”
 .Calculation = xlPercentDifferenceFrom
 .BaseField = “State”
 .BaseItem = “California”
 .Position = 3
 .NumberFormat = “#0.0%”
End With

Table 13.4 shows the complete list of .Calculation options. The second column indicates

whether the calculation is compatible with earlier versions of Excel. The third column indi-

cates if you need a base field and base item.

307Using Advanced Pivot Table Features

Table 13.4 Complete List of .Calculation Options

Calculation Version BaseField/BaseItem

xlDifferenceFrom All Both required

xlIndex All Neither

xlNoAdditionalCalculation All Neither

xlPercentDifferenceFrom All Both required

xlPercentOf All Both required

xlPercentOfColumn All Neither

xlPercentOfParent 2010 Only BaseField only

xlPercentOfParentColumn 2010 Only Both required

xlPercentOfParentRow 2010 Only Both required

xlPercentOfRow All Neither

xlPercentOfTotal All Neither

xlPercentRunningTotal 2010 Only BaseField only

xlRankAscending 2010 Only BaseField only

xlRankDescending 2010 Only BaseField only

xlRunningTotal All BaseField only

After that long explanation of the .Calculation property, you can build the other two pivot

table fields for the product line report.

Add Revenue to the report twice. The first time, there is no calculation. The second time,

calculate the percentage of total:

‘ Set up the data fields - Revenue
With PT.PivotFields(“Revenue”)
 .Orientation = xlDataField
 .Function = xlSum
 .Position = 2
 .NumberFormat = “#,##0”
 .Name = “Revenue “
End With

‘ Set up the data fields - % of total Revenue
With PT.PivotFields(“Revenue”)
 .Orientation = xlDataField
 .Function = xlSum
 .Position = 3
 .NumberFormat = “0.0%”
 .Name = “% of Total “
 .Calculation = xlPercentOfColumn
End With

Chapter 13 Using VBA to Create Pivot Tables308

Take careful note of the name of the first field above. By default, Excel would use Sum of Revenue.

Like me, if you think this is a goofy title, you can change it. However, you cannot change it to Revenue

because there is already a field in the pivot table field list with that name.

In the preceding code, I used the name “Revenue ” (with a trailing space). This works fine, and no one

notices the extra space. However, in the rest of the macro, when you refer to this field, remember to

refer to it as “Revenue ” (with a trailing space).

T
IP

Eliminating Blank Cells in the Values Area
If you have some customers who were new in year 2, their sales will appear blank in year

1. Anyone using Excel 97 or later can replace blank cells with zeros. In the Excel interface,

you can find the setting on the Layout & Format tab of the PivotTable Options dialog box.

Select the For Empty Cells, Show option and type 0 in the box.

The equivalent operation in VBA is to set the NullString property for the pivot table

to “0”:

PT.NullString = “0”

Although the proper code is to set this value to a text zero, Excel actually puts a real zero in the empty

cells.

N
O

T
E

Controlling the Sort Order with AutoSort
The Excel interface offers an AutoSort option that enables you to show customers in

descending order based on revenue. The equivalent code in VBA to sort the product field

by descending revenue uses the AutoSort method:

PT.PivotFields(“Customer”).AutoSort Order:=xlDescending, _
 Field:=”Revenue “

After applying some formatting in the macro, you now have one report with totals for all

products, as shown in Figure 13.14.

309Using Advanced Pivot Table Features

Replicating the Report for Every Product
As long as your pivot table was not built on an OLAP data source, you now have access to

one of the most powerful, but least-well-known features in pivot tables. The command is

called Show Report Filter Pages, and it will take your pivot table and replicate it for every

item in one of the fields in the Report Filter area.

Because you built the report with Product as a filter field, it takes only one line of code to

replicate the pivot table for every product.

‘ Replicate the pivot table for each product
PT.ShowPages PageField:=”Product”

After running this line of code, you will have a new worksheet for every product in the

dataset.

From there, you have some simple formatting and calculations. Check the end of the macro

for these techniques, which should be second nature by this point in the book.

Listing 13.3 shows the complete macro.

Listing 13.3 The Complete Macro

Sub CustomerByProductReport()
 ‘ Use a Pivot Table to create a report for each product
 ‘ with customers in rows and years in columns
 Dim WSD As Worksheet
 Dim PTCache As PivotCache
 Dim PT As PivotTable
 Dim PT2 As PivotTable
 Dim WS As Worksheet
 Dim WSF As Worksheet
 Dim PRange As Range
 Dim FinalRow As Long
 Set WSD = Worksheets(“PivotTable”)

 ‘ Delete any prior pivot tables
 For Each PT In WSD.PivotTables
 PT.TableRange2.Clear
 Next PT

Figure 13.14
Replicate this report for
each product.

Chapter 13 Using VBA to Create Pivot Tables310

 WSD.Range(“J1:Z1”).EntireColumn.Clear

 ‘ Define input area and set up a Pivot Cache
 FinalRow = WSD.Cells(Application.Rows.Count, 1).End(xlUp).Row
 FinalCol = WSD.Cells(1, Application.Columns.Count). _
 End(xlToLeft).Column
 Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)
 Set PTCache = ActiveWorkbook.PivotCaches.Add(SourceType:= _
 xlDatabase, SourceData:=PRange.Address)

 ‘ Create the Pivot Table from the Pivot Cache
 Set PT = PTCache.CreatePivotTable(TableDestination:=WSD. _
 Cells(2, FinalCol + 2), TableName:=”PivotTable1”)

 ‘ Turn off updating while building the table
 PT.ManualUpdate = True

 ‘ Set up the row fields
 PT.AddFields RowFields:=”Customer”, _
 ColumnFields:=Array(“Date”, “Data”), _
 PageFields:=”Product”

 ‘ Set up the data fields - count of orders
 With PT.PivotFields(“Region”)
 .Orientation = xlDataField
 .Function = xlCount
 .Position = 1
 .NumberFormat = “#,##0”
 .Name = “# of Orders “
 End With

 ‘ Pause here to group daily dates up to years
 ‘ Need to draw the pivot table so you can select date heading
 PT.ManualUpdate = False
 PT.ManualUpdate = True

 ‘ Group daily dates up to years
 PT.PivotFields(“Date”).LabelRange.Group , Periods:= _
 Array(False, False, False, False, False, False, True)

 ‘ Set up the data fields - Revenue
 With PT.PivotFields(“Revenue”)
 .Orientation = xlDataField
 .Function = xlSum
 .Position = 2
 .NumberFormat = “#,##0”
 .Name = “Revenue “
 End With

 ‘ Set up the data fields - % of total Revenue
 With PT.PivotFields(“Revenue”)
 .Orientation = xlDataField
 .Function = xlSum
 .Position = 3
 .NumberFormat = “0.0%”
 .Name = “% of Total “
 .Calculation = xlPercentOfColumn
 End With

311Using Advanced Pivot Table Features

 ‘ Sort the customers so the largest is at the top
 PT.PivotFields(“Customer”).AutoSort Order:=xlDescending, _
 Field:=”Revenue “

 With PT
 .ShowTableStyleColumnStripes = True
 .ShowTableStyleRowStripes = True
 .TableStyle2 = “PivotStyleMedium10”
 .NullString = “0”
 End With

 ‘ Calc the pivot table
 PT.ManualUpdate = False
 PT.ManualUpdate = True

 ‘ Replicate the pivot table for each product
 PT.ShowPages PageField:=”Product”

 Ctr = 0
 For Each WS In ActiveWorkbook.Worksheets
 If WS.PivotTables.Count > 0 Then
 If WS.Cells(1, 1).Value = “Product” Then
 ‘ Save some info
 WS.Select
 ThisProduct = Cells(1, 2).Value
 Ctr = Ctr + 1
 If Ctr = 1 Then
 Set WSF = ActiveSheet
 End If
 Set PT2 = WS.PivotTables(1)
 CalcRows = PT2.TableRange1.Rows.Count - 3

 PT2.TableRange2.Copy
 PT2.TableRange2.PasteSpecial xlPasteValues

 Range(“A1:C3”).ClearContents
 Range(“A1:B2”).Clear
 Range(“A1”).Value = “Product report for “ & ThisProduct
 Range(“A1”).Style = “Title”

 ‘ Fix some headings
 Range(“b5:d5”).Copy Destination:=Range(“H5:J5”)
 Range(“H4”).Value = “Total”
 Range(“I4:J4”).Clear

 ‘ Copy the format
 Range(“J1”).Resize(CalcRows + 5, 1).Copy
 Range(“K1”).Resize(CalcRows + 5, 1).PasteSpecial xlPasteFormats
 Range(“K5”).Value = “% Rev Growth”
 Range(“K6”).Resize(CalcRows, 1).FormulaR1C1 = _
 “=IFERROR(RC6/RC3-1,1)”

 Range(“A2:K5”).Style = “Heading 4”
 Range(“A1”).Resize(CalcRows + 2, 11).Columns.AutoFit

 End If
 End If

Chapter 13 Using VBA to Create Pivot Tables312

 Next WS

 WSD.Select
 PT.TableRange2.Clear
 Set PTCache = Nothing

 WSF.Select
 MsgBox Ctr & “ product reports created.”

End Sub

Filtering a Data Set
There are many ways to filter a pivot table, from the new Excel 2010 slicers, to the Excel

2007 conceptual filters, to simply selecting and clearing items from one of the many field

drop-downs.

Manually Filtering Two or More Items in a Pivot Field
When you open a field heading drop-down and select or clear items from the list, you are

applying a manual filter.

Filter Drop-Down

Manual Filters

Search Filter Conceptual Filters

Figure 13.15
This filter drop-down
offers manual filters, a
search box, and concep-
tual filters.

For example, you have one client who sells shoes. In the report showing sales of sandals, he

wants to see just the stores that are in warm-weather states. The code to hide a particular

store is as follows:

PT.PivotFields(“Store”).PivotItems(“Minneapolis”).Visible = False

313Filtering a Data Set

This process is easy in VBA. After building the table with Product in the page field, loop

through to change the Visible property to show only the total of certain products:

‘ Make sure all PivotItems along line are visible
For Each PivItem In _
 PT.PivotFields(“Product”).PivotItems
 PivItem.Visible = True
Next PivItem

‘ Now - loop through and keep only certain items visible
For Each PivItem In _
 PT.PivotFields(“Product”).PivotItems
 Select Case PivItem.Name
 Case “Landscaping/Grounds Care”, _
 “Green Plants and Foliage Care”
 PivItem.Visible = True
 Case Else
 PivItem.Visible = False
 End Select
Next PivItem

Using the Conceptual Filters
Excel 2007 introduced new conceptual filters for date fields, numeric fields, and text fields.

Open the drop-down for any field label in the pivot table. In the drop-down that appears,

you can choose Label Filters, Date Filters, or Value Filters. The Date filters offer the abil-

ity to filter to a conceptual period such as last month or next year (see Figure 13.16).

Figure 13.16
These date filters were
introduced in Excel 2007.

Chapter 13 Using VBA to Create Pivot Tables314

To apply a label filter in VBA, use the PivotFilters.Add method. The following code filters

to the customers that start with the letter E:

PT.PivotFields(“Customer”).PivotFilters.Add _
 Type:=xlCaptionBeginsWith, Value1:=”E”

To clear the filter from the Customer field, use the ClearAllFilters method:

PT.PivotFields(“Customer”).ClearAllFilters

To apply a date filter to the date field to find records from this week, use this code:

PT.PivotFields(“Date”).PivotFilters.Add Type:=xlThisWeek

The value filters allow you to filter one field based on the value of another field. For exam-

ple, to find all the markets where the total revenue is over $100,000, you would use this

code:

PT.PivotFields(“Market”).PivotFilters.Add _
 Type:=xlValueIsGreaterThan, _
 DataField:=PT.PivotFields(“Sum of Revenue”), _
 Value1:=100000

Other value filters might allow you to specify that you want branches where the revenue is

between $50,000 and $100,000. In this case, you would specify one limit as Value1 and the

second limit as Value2:

PT.PivotFields(“Market”).PivotFilters.Add _
 Type:=xlValueIsBetween, _
 DataField:=PT.PivotFields(“Sum of Revenue”), _
 Value1:=50000, Value2:=100000

Table 13.5 lists all the possible filter types.

Table 13.5 Filter Types

Filter Type Description

xlBefore Filters for all dates before a specified date

xlBeforeOrEqualTo Filters for all dates on or before a specified date

xlAfter Filters for all dates after a specified date

xlAfterOrEqualTo Filters for all dates on or after a specified date

xlAllDatesInPeriodJanuary Filters for all dates in January

xlAllDatesInPeriodFebruary Filters for all dates in February

xlAllDatesInPeriodMarch Filters for all dates in March

xlAllDatesInPeriodApril Filters for all dates in April

xlAllDatesInPeriodMay Filters for all dates in May

xlAllDatesInPeriodJune Filters for all dates in June

xlAllDatesInPeriodJuly Filters for all dates in July

315Filtering a Data Set

Filter Type Description

xlAllDatesInPeriodAugust Filters for all dates in August

xlAllDatesInPeriodSeptember Filters for all dates in September

xlAllDatesInPeriodOctober Filters for all dates in October

xlAllDatesInPeriodNovember Filters for all dates in November

xlAllDatesInPeriodDecember Filters for all dates in December

xlAllDatesInPeriodQuarter1 Filters for all dates in Quarter 1

xlAllDatesInPeriodQuarter2 Filters for all dates in Quarter 2

xlAllDatesInPeriodQuarter3 Filters for all dates in Quarter 3

xlAllDatesInPeriodQuarter4 Filters for all dates in Quarter 4

xlBottomCount Filters for the specified number of values from the bottom of a list

xlBottomPercent Filters for the specified percentage of values from the bottom of
a list

xlBottomSum Sums the values from the bottom of the list

xlCaptionBeginsWith Filters for all captions beginning with the specified string

xlCaptionContains Filters for all captions that contain the specified string

xlCaptionDoesNotBeginWith Filters for all captions that do not begin with the specified string

xlCaptionDoesNotContain Filters for all captions that do not contain the specified string

xlCaptionDoesNotEndWith Filters for all captions that do not end with the specified string

xlCaptionDoesNotEqual Filters for all captions that do not match the specified string

xlCaptionEndsWith Filters for all captions that end with the specified string

xlCaptionEquals Filters for all captions that match the specified string

xlCaptionIsBetween Filters for all captions that are between a specified range of values

xlCaptionIsGreaterThan Filters for all captions that are greater than the specified value

xlCaptionIsGreaterThan
OrEqualTo

Filters for all captions that are greater than or match the specified
value

xlCaptionIsLessThan Filters for all captions that are less than the specified value

xlCaptionIsLessThanOrEqualTo Filters for all captions that are less than or match the specified
value

xlCaptionIsNotBetween Filters for all captions that are not between a specified range of
values

xlDateBetween Filters for all dates that are between a specified range of dates

xlDateLastMonth Filters for all dates that apply to the previous month

xlDateLastQuarter Filters for all dates that apply to the previous quarter

xlDateLastWeek Filters for all dates that apply to the previous week

xlDateLastYear Filters for all dates that apply to the previous year

Chapter 13 Using VBA to Create Pivot Tables316

Filter Type Description

xlDateNextMonth Filters for all dates that apply to the next month

xlDateNextQuarter Filters for all dates that apply to the next quarter

xlDateNextWeek Filters for all dates that apply to the next week

xlDateNextYear Filters for all dates that apply to the next year

xlDateThisMonth Filters for all dates that apply to the current month

xlDateThisQuarter Filters for all dates that apply to the current quarter

xlDateThisWeek Filters for all dates that apply to the current week

xlDateThisYear Filters for all dates that apply to the current year

xlDateToday Filters for all dates that apply to the current date

xlDateTomorrow Filters for all dates that apply to the next day

xlDateYesterday Filters for all dates that apply to the previous day

xlNotSpecificDate Filters for all dates that do not match a specified date

xlSpecificDate Filters for all dates that match a specified date

xlTopCount Filters for the specified number of values from the top of a list

xlTopPercent Filters for the specified percentage of values from a list

xlTopSum Sums the values from the top of the list

xlValueDoesNotEqual Filters for all values that do not match the specified value

xlValueEquals Filters for all values that match the specified value

xlValueIsBetween Filters for all values that are between a specified range of values

xlValueIsGreaterThan Filters for all values that are greater than the specified value

xlValueIsGreaterThanOrEqualTo Filters for all values that are greater than or match the specified
value

xlValueIsLessThan Filters for all values that are less than the specified value

xlValueIsLessThanOrEqualTo Filters for all values that are less than or match the specified value

xlValueIsNotBetween Filters for all values that are not between a specified range of
values

xlYearToDate Filters for all values that are within 1 year of a specified date

Using the Search Filter
Excel 2010 added a Search box to the filter drop-down. While this is a slick feature in the

Excel interface, there is no equivalent magic in VBA. Whereas the drop-down offers the

Select All Search Results check box, the equivalent VBA just lists all the items that match

the selection.

Table 13.5 (continued)

317Filtering a Data Set

There is nothing new in Excel 2010 VBA to emulate the search box. To achieve the same

results in VBA, use the xlCaptionContains filter described in the previous style.

If you are designing an executive dashboard utility, you might want to spotlight the top five customers. As with the

AutoSort option, you could be a pivot table pro and never have stumbled across the Top 10 AutoShow feature in Excel. This

setting lets you select either the top or the bottom n records based on any Data field in the report.

The code to use AutoShow in VBA uses the .AutoShow method:

‘ Show only the top 5 Customers
PT.PivotFields(“Customer”).AutoShow Top:=xlAutomatic, Range:=xlTop, _
 Count:=5, Field:= “Sum of Revenue”

When you create a report using the .AutoShow method, it is often helpful to copy the data and then go back to the

original pivot report to get the totals for all markets. In the code, this is achieved by removing the Customer field from the

pivot table and copying the grand total to the report. The code produces the report shown in Figure 13.17.

Sub Top5Customers()
 ‘ Listing 13.4
 ‘ Produce a report of the top 5 customers
 Dim WSD As Worksheet
 Dim WSR As Worksheet
 Dim WBN As Workbook
 Dim PTCache As PivotCache
 Dim PT As PivotTable
 Dim PRange As Range
 Dim FinalRow As Long
 Set WSD = Worksheets(“PivotTable”)

 ‘ Delete any prior pivot tables
 For Each PT In WSD.PivotTables
 PT.TableRange2.Clear
 Next PT
 WSD.Range(“J1:Z1”).EntireColumn.Clear

 ‘ Define input area and set up a Pivot Cache
 FinalRow = WSD.Cells(Application.Rows.Count, 1).End(xlUp).Row

C A S E S T U D Y : F I LT E R I N G T O T O P F I V E O R T O P 1 0 U S I N G A F I LT E R

Figure 13.17
The Top 5 Customers
report contains two pivot
tables.

Chapter 13 Using VBA to Create Pivot Tables318

 FinalCol = WSD.Cells(1, Application.Columns.Count). _
 End(xlToLeft).Column
 Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)
 Set PTCache = ActiveWorkbook.PivotCaches.Add(SourceType:= _
 xlDatabase, SourceData:=PRange.Address)

 ‘ Create the Pivot Table from the Pivot Cache
 Set PT = PTCache.CreatePivotTable(TableDestination:=WSD. _
 Cells(2, FinalCol + 2), TableName:=”PivotTable1”)

 ‘ Turn off updating while building the table
 PT.ManualUpdate = True

 ‘ Set up the row fields
 PT.AddFields RowFields:=”Customer”, ColumnFields:=”Product”

 ‘ Set up the data fields
 With PT.PivotFields(“Revenue”)
 .Orientation = xlDataField
 .Function = xlSum
 .Position = 1
 .NumberFormat = “#,##0”
 .Name = “Total Revenue”
 End With

 ‘ Ensure that we get zeros instead of blanks in the data area
 PT.NullString = “0”

 ‘ Sort customers descending by sum of revenue
 PT.PivotFields(“Customer”).AutoSort Order:=xlDescending, _
 Field:=”Total Revenue”

 ‘ Show only the top 5 customers
 PT.PivotFields(“Customer”).AutoShow Type:=xlAutomatic, Range:=xlTop, _
 Count:=5, Field:=”Total Revenue”

 ‘ Calc the pivot table to allow the date label to be drawn
 PT.ManualUpdate = False
 PT.ManualUpdate = True

 ‘ Create a new blank workbook with one worksheet
 Set WBN = Workbooks.Add(xlWBATWorksheet)
 Set WSR = WBN.Worksheets(1)
 WSR.Name = “Report”
 ‘ Set up ritle for report
 With WSR.[A1]
 .Value = “Top 5 Customers”
 .Font.Size = 14
 End With

 ‘ Copy the pivot table data to row 3 of the report sheet
 ‘ Use offset to eliminate the title row of the pivot table

319Filtering a Data Set

Setting Up Slicers to Filter a Pivot Table
Excel 2010 introduced the concept of slicers to filter a pivot table. A slicer is a visual filter.

Slicers can be resized and repositioned. You can control the color of the slicer and control

the number of columns in a slicer. You can also select or unselect items from a slicer using

VBA.

Figure 13.18 shows a pivot table with five slicers. The Date slicer has been modified to have

three.

 PT.TableRange2.Offset(1, 0).Copy
 WSR.[A3].PasteSpecial Paste:=xlPasteValuesAndNumberFormats
 LastRow = WSR.Cells(Rows.Count, 1).End(xlUp).Row
 WSR.Cells(LastRow, 1).Value = “Top 5 Total”

 ‘ Go back to the pivot table to get totals without the AutoShow
 PT.PivotFields(“Customer”).Orientation = xlHidden
 PT.ManualUpdate = False
 PT.ManualUpdate = True
 PT.TableRange2.Offset(2, 0).Copy
 WSR.Cells(LastRow + 2, 1).PasteSpecial Paste:= _
 xlPasteValuesAndNumberFormats
 WSR.Cells(LastRow + 2, 1).Value = “Total Company”

 ‘ Clear the pivot table
 PT.TableRange2.Clear
 Set PTCache = Nothing

 ‘ Do some basic formatting

 ‘ Autofit columns, bold the headings, right-align
 WSR.Range(WSR.Range(“A3”), WSR.Cells(LastRow + 2, 6)).Columns.AutoFit
 Range(“A3”).EntireRow.Font.Bold = True
 Range(“A3”).EntireRow.HorizontalAlignment = xlRight
 Range(“A3”).HorizontalAlignment = xlLeft

 Range(“A2”).Select
 MsgBox “CEO Report has been Created”
End Sub

The Top 5 Customers report actually contains two snapshots of a pivot table. After using the AutoShow feature to grab the

top five markets with their totals, the macro went back to the pivot table, removed the AutoShow option, and grabbed the

total of all customers to produce the Total Company row.

Chapter 13 Using VBA to Create Pivot Tables320

A slicer consists of a slicer cache and a slicer. To define a slicer cache, you need to specify a

pivot table as the source and a field name as the SourceField. The slicer cache is defined at

the workbook level. This would allow you to have the slicer on a different worksheet than

the actual pivot table:

Dim SCP as SlicerCache
Dim SCR as SlicerCache
Set SCP = ActiveWorkbook.SlicerCaches.Add(Source:=PT, SourceField:=”Product”)
Set SCR = ActiveWorkbook.SlicerCaches.Add(Source:=PT, SourceField:=”Region”)

After you have defined the slicer cache, you can add the slicer. The slicer is defined as an

object of the slicer cache. Specify a worksheet as the destination. The name argument con-

trols the internal name for the slicer. The Caption argument is the heading that will be vis-

ible in the slicer. This might be useful if you would like to show the name Region, but the

IT department defined the field as IDKRegn. Specify the size of the slicer using height and

width in points. Specify the location using top and left in point.

In the followimg code, the values for top, left, height, and width are assigned to be equal to

the location or size of certain cell ranges:

Dim SLP as Slicer
Set SLP = SCP.Slicers.Add(SlicerDestination:=WSD, Name:=”Product”, _
 Caption:=”Product”, _
 Top:=WSD.Range(“A12”).Top, _
 Left:=WSD.Range(“A12”).Left + 10, _
 Width:=WSR.Range(“A12:C12”).Width, _
 Height:=WSD.Range(“A12:A16”).Height)

All slicers start out as one column. You can change the style and number of columns with

this code:

‘ Format the color and number of columns
With SLS
 .Style = “SlicerStyleLight6”
 .NumberOfColumns = 5
End With

Figure 13.18
Slicers provide a visual
filter of several fields.

321Filtering a Data Set

I find that when I create slicers in the Excel interface, I spend many mouse clicks making adjustments to the slicers. After

adding two or three slicers, they are arranged in an overlapping tile arrangement. I always tweak the location, size,

number of columns, and so on. In my seminars, I always brag that I can create a complex pivot table in six mouse clicks.

Slicers are admittedly powerful but seem to take 20 mouse clicks before they look right. Having a macro make all of

these adjustments at once is a time-saver.

Once the slicer is defined, you can actually use VBA to choose which items are activated in

the slicer. It seems counter-intuitive, but to choose items in the slicer, you have to change

the SlicerItem, which is a member of the SlicerCache, not a member of the Slicer:

With SCP
 .SlicerItems(“A292”).Selected = True
 .SlicerItems(“B722”).Selected = True
 .SlicerItems(“C409”).Selected = False
 .SlicerItems(“D625”).Selected = False
 .SlicerItems(“E438”).Selected = False
End With

You might need to deal with slicers that already exist. If a slicer is created for the product

field, the name of the SlicerCache will be “Slicer_Product”. The following code will for-

mat existing slicers:

Sub MoveAndFormatSlicer()
 Dim SCP As SlicerCache
 Dim SLP as Slicer
 Dim WSD As Worksheet
 Set WSD = ActiveSheet
 Set SCP = ActiveWorkbook.SlicerCaches(“Slicer_Product”)
 Set SLS = SCS.Slicers(“Product”)
 With SLS
 .Style = “SlicerStyleLight6”
 .NumberOfColumns = 5
 .Top = WSD.Range(“A1”).Top + 5
 .Left = WSD.Range(“A1”).Left + 5
 .Width = WSD.Range(“A1:B14”).Width - 60
 .Height = WSD.Range(“A1:B14”).Height
 End With
End Sub

Filtering an OLAP Pivot Table Using Named Sets
Ready for some good news, bad news, and sneaky news?

Good News: Named Sets

Microsoft added an amazing feature to Excel 2010 pivot tables called named sets. This

feature allows you to create filters that were never possible before. For example, in Figure

13.19, the pivot table shows Actuals and Budget for FY2009 and FY2010. It would have

been impossible to show an asymmetric report with only FY2009 Actuals and FY 2010

Budget: when you turned off Budget for 2009, it would have been turned off for all years.

Named sets allow you to overcome this.

Chapter 13 Using VBA to Create Pivot Tables322

Bad News Named Sets Limitations

Named sets only work for data coming from OLAP pivot tables. If you are dealing with

pivot tables based on regular Excel data, you will have to wait until a future release of Excel

to tap into the power of named sets.

Sneaky News: Workaround

A pivot table produced using the PowerPivot add-in is actually an OLAP pivot table. To

create the pivot table shown in Figure 13.19, I copied the Excel data, pasted as a new table

in the PowerPivot add-in, and then returned to Excel to create the pivot table.

2010 Budget2009 Actuals

Figure 13.19
You want to show 2009
Actuals and 2010 Budget.

PowerPivot is a free add-in for Excel 2010 brought to you by the SQL Server Analysis Services team at

Microsoft. Because you cannot control PowerPivot from VBA, it is not covered in this book. However, it

is a great add-in. You can use PowerPivot to mash up datasets from multimillion row datasets. You can

use PowerPivot to define calculations not possible in regular Excel pivot tables. I have written an entire

book about PowerPivot: PowerPivot for the Excel Data Analyst.

N
O

T
E

This is a minor use for a powerful tool. The PowerPivot add-in is designed to mash-up

multimillion row recordsets from various sources. To take a single flat table and paste it into

the powerful tool is admittedly underutilizing the tool. However, it is one great way to get

an unbalanced pivot table report.

Using a Named Set for Asymmetric Pivot Table

A common request is to show an asymmetric selection from two column fields. In Figure

13.19, you would like to show 2009 year’s actual and 2010 budget.

323Filtering a Data Set

To define a named set, you will have to build a formula that uses the MDX language. MDX

stands for Multidimensional Expressions Language. There are many MDX tutorials on the

Internet. Luckily, you can turn on the macro recorder while you define a named set using

the Excel 2010 interface and have the macro recorder write the MDX formula for you.

When you are defining a named set, you will define both a CalculatedMember and then add

a CubeField set. These declarations at the top of the macro will initialize two calculated

members:

Dim CM1 As CalculatedMember

The MDX formula is the key to the named set. In this code, the formula contains 2009

Actuals and 2010 Budget. The formula starts and ends with curly braces indicating that

the formula contains an array of values. Each line of code is adding another column to the

array:

‘ Set up a formula to get FY2009 actuals and FY2010 Budget
FText = “{([Financials].[Year].&[FY2009],[Financials].[Measure].&[Actuals]),”
FText = FText & _
 “([Financials].[Year].&[FY2010],[Financials].[Measure].&[Budget])}”

After you have defined the formula, use the following code to add the calculated member to

the dataset:

‘ Define a Calculated Member to replace Year & Measure
Set CM1 = ActiveWorkbook.Connections(“PowerPivot Data”). _
 OLEDBConnection.CalculatedMembers.Add(_
 Name:=”[ActVBud]”, _
 Formula:=FText, _
 Type:=xlCalculatedSet, _
 Dynamic:=False, _
 HierarchizeDistinct:=False)
CM1.FlattenHierarchies = False
PT.CubeFields.AddSet Name:=”[ActVBud]”, Caption:=”ActVBud”

This code will add a new folder to the pivot table field list called Sets. In that folder, an

item called ActVBud will be available as field, just like the field called Year or Measure. In

your code, you will want to replace the Year and Measure field in the pivot table with the

ActVBud field:

‘ Remove the Measure and Year fields, replace it with the Set
PT.CubeFields(“[Financials].[Measure]”).Orientation = xlHidden
PT.CubeFields(“[Financials].[Year]”).Orientation = xlHidden
PT.CubeFields(“[ActVBud]”).Orientation = xlColumnField

Figure 13.20 shows the asymmetric report.

Chapter 13 Using VBA to Create Pivot Tables324

Using Other Pivot Table Features
This section covers a few additional features in pivot tables that you might need to code

with VBA.

Calculated Data Fields
Pivot tables offer two types of formulas. The most useful type defines a formula for a cal-

culated field. This adds a new field to the pivot table. Calculations for calculated fields are

always done at the summary level. If you define a calculated field for average price as rev-

enue divided by units sold, Excel first adds the total revenue and total quantity, and then

it does the division of these totals to get the result. In many cases, this is exactly what you

need. If your calculation does not follow the associative law of mathematics, it might not

work as you expect.

To set up a Calculated field, use the Add method with the CalculatedFields object. You

have to specify a field name and a formula.

Named Sets in Field List

ActVBudget Replaces Year and Measure

Figure 13.20
Named sets enable asym-
metric reporting.

Note that if you create a field called Profit Percent, the default pivot table produces a field called Sum

of Profit Percent. This title is misleading and downright silly. The solution is to use the Name property

when defining the Data field to replace Sum of Profit Percent with something such as GP Pct. Keep in

mind that this name must differ from the name for the Calculated field.

N
O

T
E

‘ Define Calculated Fields
 PT.CalculatedFields.Add Name:=”ProfitPercent”, Formula:=”=Profit/Revenue”
 With PT.PivotFields(“ProfitPercent”)
 .Orientation = xlDataField
 .Function = xlSum

325Using Other Pivot Table Features

 .Position = 3
 .NumberFormat = “#0.0%”
 .Name = “GP Pct”
 End With

Calculated Items
Suppose you have a Measure field with two items, Budget and Actual. You would like to

add a new position to calculate Variance as Actual-Budget. You can do this with a calculated

item by using this code:

‘ Define calculated item along the product dimension
PT.PivotFields(“Measure”).CalculatedItems _
 .Add “Variance”, “=’Actual’-’Budget’”

Using ShowDetail to Filter a Recordset
When you take any pivot table in the Excel user interface and then double-click any num-

ber in the table, Excel will insert a new sheet in the workbook and copies all the source

records that represent that number. In the Excel user interface, this is a great way to per-

form a drill-down query into a dataset.

The equivalent VBA property is ShowDetail. By setting this property to True for any cell in

the pivot table, you generate a new worksheet with all the records that make up that cell:

PT.TableRange2.Offset(2, 1).Resize(1, 1).ShowDetail = True

Changing the Layout from the Design Tab
The Layout group of the Design tab contains four drop-downs that control the following:

■ Location of subtotals (top or bottom)

■ Presence of grand totals

■ Report layout including if outer row labels are repeated

■ Presence of blank rows

Subtotals can appear either at the top or at the bottom of a group of pivot items. The
SubtotalLocation property applies to the entire pivot table; valid values are xlAtBottom or

xlAtTop:

PT.SubtotalLocation:=xlAtTop

Grand totals can be turned on or off for rows or columns. Because these two settings can

be confusing, remember that at the bottom of a report, there is a total line that most people

would call the Grand Total Row. To turn off that row, you have to use the following:

PT.ColumnGrand = False

Chapter 13 Using VBA to Create Pivot Tables326

You need to turn off the ColumnGrand when you want to suppress the total row because

Microsoft calls that row the “grand total for columns.” Get it? In other words, they are say-

ing that the row at the bottom contains the total of the columns above it. I finally started

doing better when I would decide which one to turn off, and then turn off the opposite one.

To suppress what you would call the Grand Total Column along the right side of the

report, you have to suppress what Microsoft calls the Total for Rows with the following

code:

PT.RowGrand = False

Settings for the Report Layout

There are three settings for the report layout.

■ Tabular layout—Similar to the default layout in Excel 2003

■ Outline layout—Optionally available in Excel 2003

■ Compact layout—Introduced in Excel 2007

When you create a pivot table in the Excel interface, you will get compact layout. When

you build a pivot table in VBA, you will get the tabular layout. You can change to one of

the other layouts with one of these lines:

PT.RowAxisLayout xlTabularRow
PT.RowAxisLayout xlOutlineRow
PT.RowAxisLayout = xlCompactRow

Starting in Excel 2007, you can add a blank line to the layout after each group of pivot

items. Although the Design tab offers a single setting to affect the entire pivot table, the

setting is actually applied to each individual pivot field individually. The macro recorder

responds by recording a dozen lines of code for a pivot table with 12 fields. You can intel-

ligently add a single line of code for the outer Row fields:

PT.PivotFields(“Region”).LayoutBlankLine = True

Suppressing Subtotals for Multiple Row Fields
As soon as you have more than one row field, Excel automatically adds subtotals for all but

the innermost row field. That extra row field can get in the way if you plan on reusing the

results of the pivot table as a new dataset for some other purpose. Although accomplishing

this task manually can be relatively simple, the VBA code to suppress subtotals is surpris-

ingly complex.

Most people do not realize that it is possible to show multiple types of subtotals. For exam-

ple, you can choose to show Total, Average, Min, and Max in the same pivot table.

To suppress subtotals for a field, you must set the Subtotals property equal to an array of

12 False values. The first False turns off automatic subtotals, the second False turns off

the Sum subtotal, the third False turns off the Count subtotal, and so on. This line of code

suppresses the Region subtotal:

327Next Steps

PT.PivotFields(“Region”).Subtotals = Array(False, False, False, False, _
 False, False, False, False, False, False, False, False)

A different technique is to turn on the first subtotal. This method automatically turns off

the other 11 subtotals. You can then turn off the first subtotal to make sure that all subtotals

are suppressed:

PT.PivotFields(“Region”).Subtotals(1) = True
PT.PivotFields(“Region”).Subtotals(1) = False

Beginning with Excel 2007, fantastic data visualizations such as icon sets, color gradients, and in-cell data bars are offered.

When you apply visualization to a pivot table, you should exclude the total rows from the visualization.

If you have 20 customers that average $3,000,000 in revenue each, the total for the 20 customers is $60 million. If you

include the total in the data visualization, the total gets the largest bar, and all the customer records have tiny bars.

In the Excel user interface, you always want to use the Add Rule or Edit Rule choice to select the option All Cells Showing

“Sum of Revenue” for “Customer.”

The code to add a data bar to the Revenue field is as follows:

‘ Apply a Databar
PT.TableRange2.Cells(3, 2).Select
Selection.FormatConditions.AddDatabar
Selection.FormatConditions(1).ShowValue = True
Selection.FormatConditions(1).SetFirstPriority
With Selection.FormatConditions(1)
 .MinPoint.Modify newtype:=xlConditionValueLowestValue
 .MaxPoint.Modify newtype:=xlConditionValueHighestValue
End With
With Selection.FormatConditions(1).BarColor
 .ThemeColor = xlThemeColorAccent3
 .TintAndShade = -0.5
End With
Selection.FormatConditions(1).ScopeType = xlFieldsScope

C A S E S T U D Y : A P P LY I N G A D A T A V I S U A L I Z A T I O N

A major secret of successful programmers is to

never waste time writing the same code twice. They

all have little bits—or even big bits—of code that

are used over and over again. Another big secret

is to never take 8 hours doing something that can

be done in 10 minutes—which is what this book is

about!

This chapter contains programs donated by several

Excel power programmers. These are programs

they have found useful, and they hope these will

help you too. Not only can they save you time, but

they may also teach you new ways of solving com-

mon problems.

Different programmers have different programming

styles, and we did not rewrite the submissions. As

you review the lines of code, you will notice differ-

ent ways of doing the same task such as referring to

ranges.

File Operations
The following utilities deal with handling files in

folders. Being able to loop through a list of files in a

folder is a useful task.

List Files in a Directory

This program returns the filename, size, and date

modified of all specified file types in the selected

directory and its subfolders.

Sub ExcelFileSearch()
Dim srchExt As Variant, srchDir As Vari-
ant, i As
Long, j As Long
Dim strName As String, varArr(1 To
1048576, 1 To
3) As Variant

Excel Power

14

Chapter 14 Excel Power330

Dim strFileFullName As String
Dim ws As Worksheet
Dim fso As Object

Let srchExt = Application.InputBox(“Please Enter File Extension”, “Info Re-
quest”)
If srchExt = False And Not TypeName(srchExt) = “String” Then
 Exit Sub
End If

Let srchDir = BrowseForFolderShell
If srchDir = False And Not TypeName(srchDir) = “String” Then
 Exit Sub
End If

Application.ScreenUpdating = False

Set ws = ThisWorkbook.Worksheets.Add(Sheets(1))
On Error Resume Next
Application.DisplayAlerts = False
ThisWorkbook.Worksheets(“FileSearch Results”).Delete
Application.DisplayAlerts = True
On Error GoTo 0
ws.Name = “FileSearch Results”

Let strName = Dir$(srchDir & “*” & srchExt)
Do While strName <> vbNullString
 Let i = i + 1
 Let strFileFullName = srchDir & strName
 Let varArr(i, 1) = strFileFullName
 Let varArr(i, 2) = FileLen(strFileFullName) \ 1024
 Let varArr(i, 3) = FileDateTime(strFileFullName)
 Let strName = Dir$()
Loop

Set fso = CreateObject(“Scripting.FileSystemObject”)
Call recurseSubFolders(fso.GetFolder(srchDir), varArr(), i, CStr(srchExt))
Set fso = Nothing

ThisWorkbook.Windows(1).DisplayHeadings = False
With ws
 If i > 0 Then
 .Range(“A2”).Resize(i, UBound(varArr, 2)).Value = varArr
 For j = 1 To i
 .Hyperlinks.Add anchor:=.Cells(j + 1, 1), Address:=varArr(j, 1)
 Next
 End If
 .Range(.Cells(1, 4), .Cells(1, .Columns.Count)).EntireColumn.Hidden = True
 .Range(.Cells(.Rows.Count, 1).End(xlUp)(2), _
 .Cells(.Rows.Count, 1)).EntireRow.Hidden = True
 With .Range(“A1:C1”)
 .Value = Array(“Full Name”, “Kilobytes”, “Last Modified”)
 .Font.Underline = xlUnderlineStyleSingle
 .EntireColumn.AutoFit
 .HorizontalAlignment = xlCenter
 End With
End With
Application.ScreenUpdating = True

331File Operations

End Sub

Private Sub recurseSubFolders(ByRef Folder As Object, _
 ByRef varArr() As Variant, _
 ByRef i As Long, _
 ByRef srchExt As String)
Dim SubFolder As Object
Dim strName As String, strFileFullName As String
For Each SubFolder In Folder.SubFolders
 Let strName = Dir$(SubFolder.Path & “*” & srchExt)
 Do While strName <> vbNullString
 Let i = i + 1
 Let strFileFullName = SubFolder.Path & “\” & strName
 Let varArr(i, 1) = strFileFullName
 Let varArr(i, 2) = FileLen(strFileFullName) \ 1024
 Let varArr(i, 3) = FileDateTime(strFileFullName)
 Let strName = Dir$()
 Loop
 If i > 1048576 Then Exit Sub
 Call recurseSubFolders(SubFolder, varArr(), i, srchExt)
Next
End Sub

Private Function BrowseForFolderShell() As Variant
Dim objShell As Object, objFolder As Object
Set objShell = CreateObject(“Shell.Application”)
Set objFolder = objShell.BrowseForFolder(0, “Please select a folder”, 0,
“C:\”)
If Not objFolder Is Nothing Then
 On Error Resume Next
 If IsError(objFolder.Items.Item.Path) Then
 BrowseForFolderShell = CStr(objFolder)
 Else
 On Error GoTo 0
 If Len(objFolder.Items.Item.Path) > 3 Then
 BrowseForFolderShell = objFolder.Items.Item.Path & _
 Application.PathSeparator
 Else
 BrowseForFolderShell = objFolder.Items.Item.Path
 End If
 End If
Else
 BrowseForFolderShell = False
End If
Set objFolder = Nothing: Set objShell = Nothing
End Function

Import CSV

If you find yourself importing a lot of comma-separated variable (CSV) files and then hav-

ing to go back and delete them, this program is for you. It quickly opens a CSV in Excel

and permanently deletes the original file:

Option Base 1

www.puremis.net/excel

Chapter 14 Excel Power332

Sub OpenLargeCSVFast()
 Dim buf(1 To 16384) As Variant
 Dim i As Long
 ‘Change the file location and name here
 Const strFilePath As String = “C:\temp\Test.CSV”

 Dim strRenamedPath As String
 strRenamedPath = Split(strFilePath, “.”)(0) & “txt”

 With Application
 .ScreenUpdating = False
 .DisplayAlerts = False
 End With
 ‘Setting an array for FieldInfo to open CSV
 For i = 1 To 16384
 buf(i) = Array(i, 2)
 Next
 Name strFilePath As strRenamedPath
 Workbooks.OpenText Filename:=strRenamedPath, DataType:=xlDelimited, _
 Comma:=True, FieldInfo:=buf
 Erase buf
 ActiveSheet.UsedRange.Copy ThisWorkbook.Sheets(1).Range(“A1”)
 ActiveWorkbook.Close False
 Kill strRenamedPath
 With Application
 .ScreenUpdating = True
 .DisplayAlerts = True
 End With
End Sub

Read Entire TXT to Memory and Parse

This sample takes a different approach to reading a text file. Instead of reading one record

at a time, the macro loads the entire text file into memory in a single string variable. The

macro then parses the string into individual records. The advantage of this method is that

you access the file on disk only one time. All subsequent processing occurs in memory and

is very fast:

Sub ReadTxtLines()
‘No need to install Scripting Runtime library since we used late binding
Dim sht As Worksheet
Dim fso As Object
Dim fil As Object
Dim txt As Object
Dim strtxt As String
Dim tmpLoc As Long

 ‘Working on active sheet
 Set sht = ActiveSheet
 ‘Clear data in the sheet
 sht.UsedRange.ClearContents

333Combining and Separating Workbooks

 ‘File system object that we need to manage files
 Set fso = CreateObject(“Scripting.FileSystemObject”)

 ‘File that we like to open and read
 Set fil = fso.GetFile(“c:\test.txt”)

 ‘Opening file as a TextStream
 Set txt = fil.OpenAsTextStream(1)

 ‘Reading file include into a string variable at once
 strtxt = txt.ReadAll

 ‘Close textstream and free the file. We don’t need it anymore.
 txt.Close

 ‘Find the first placement of new line char
 tmpLoc = InStr(1, strtxt, vbCrLf)

 ‘Loop until no more new line
 Do Until tmpLoc = 0
 ‘Use A column and next empty cell to write the text file line
 sht.Cells(sht.Rows.Count, 1).End(xlUp).Offset(1).Value = _
 Left(strtxt, tmpLoc - 1)

 ‘Remove the parsed line from the variable that we stored file include
 strtxt = Right(strtxt, Len(strtxt) - tmpLoc - 1)

 ‘Find the next placement of new line char
 tmpLoc = InStr(1, strtxt, vbCrLf)
 Loop

 ‘Last line that has data but no new line char
 sht.Cells(sht.Rows.Count, 1).End(xlUp).Offset(1).Value = strtxt

 ‘It will be already released by the ending of this procedure but
 ‘ as a good habit, set the object as nothing.
 Set fso = Nothing
End Sub

Combining and Separating Workbooks
The next four utilities demonstrate how to combine worksheets into single workbooks or

separate a single workbook into individual worksheets or Word documents.

Separate Worksheets into Workbooks

This sample goes through the active workbook and saves each sheet as its own workbook

in the same path as the original workbook. It names the new workbooks based on the sheet

name, and it will overwrite files without prompting. You will also notice that you need

to choose whether you save the file as XLSM (macro-enabled) or XLSX (macros will be

stripped). In the following code, both lines are included—xlsm and xlsx—but the xlsx lines

are commented out, making them inactive:

Chapter 14 Excel Power334

Sub SplitWorkbook()

Dim ws As Worksheet
Dim DisplayStatusBar As Boolean

DisplayStatusBar = Application.DisplayStatusBar
Application.DisplayStatusBar = True
Application.ScreenUpdating = False
Application.DisplayAlerts = False

For Each ws In ThisWorkbook.Sheets
 Dim NewFileName As String
 Application.StatusBar = ThisWorkbook.Sheets.Count & “ Remaining Sheets”
 If ThisWorkbook.Sheets.Count <> 1 Then
 NewFileName = ThisWorkbook.Path & “\” & ws.Name & “.xlsm” ‘Macro _
 -Enabled
‘ NewFileName = ThisWorkbook.Path & “\” & ws.Name & “.xlsx” _
 ‘Not Macro-Enabled
 ws.Copy
 ActiveWorkbook.Sheets(1).Name = “Sheet1”
 ActiveWorkbook.SaveAs Filename:=NewFileName, _
 FileFormat:=xlOpenXMLWorkbookMacroEnabled
‘ ActiveWorkbook.SaveAs Filename:=NewFileName, _
 FileFormat:=xlOpenXMLWorkbook
 ActiveWorkbook.Close SaveChanges:=False
 Else
 NewFileName = ThisWorkbook.Path & “\” & ws.Name & “.xlsm”
‘ NewFileName = ThisWorkbook.Path & “\” & ws.Name & “.xlsx”
 ws.Name = “Sheet1”
 End If
Next

Application.DisplayAlerts = True
Application.StatusBar = False
Application.DisplayStatusBar = DisplayStatusBar
Application.ScreenUpdating = True
End Sub

Combine Workbooks

This sample goes through all the Excel files in a specified directory and combines them into

a single workbook. It renames the sheets based on the name of the original workbook:

Sub CombineWorkbooks()
 Dim CurFile As String, DirLoc As String
 Dim DestWB As Workbook
 Dim ws As Object ‘allows for different sheet types

 DirLoc = ThisWorkbook.Path & “\tst\” ‘location of files
 CurFile = Dir(DirLoc & “*.xls*”)

 Application.ScreenUpdating = False
 Application.EnableEvents = False

 Set DestWB = Workbooks.Add(xlWorksheet)

335Combining and Separating Workbooks

 Do While CurFile <> vbNullString
 Dim OrigWB As Workbook
 Set OrigWB = Workbooks.Open(Filename:=DirLoc & CurFile,
ReadOnly:=True)

 ‘ Limit to valid sheet names and removes .xls*
 CurFile = Left(Left(CurFile, Len(CurFile) - 5), 29)

 For Each ws In OrigWB.Sheets
 ws.Copy After:=DestWB.Sheets(DestWB.Sheets.Count)

 If OrigWB.Sheets.Count > 1 Then
 DestWB.Sheets(DestWB.Sheets.Count).Name = CurFile & ws.Index
 Else
 DestWB.Sheets(DestWB.Sheets.Count).Name = CurFile
 End If
 Next

 OrigWB.Close SaveChanges:=False
 CurFile = Dir
 Loop

 Application.DisplayAlerts = False
 DestWB.Sheets(1).Delete
 Application.DisplayAlerts = True

 Application.ScreenUpdating = True
 Application.EnableEvents = True

 Set DestWB = Nothing
End Sub

Filter and Copy Data to Separate Worksheets

This sample uses a specified column to filter data and copies the results to new worksheets

in the active workbook:

Sub Filter_NewSheet()
Dim wbBook As Workbook
Dim wsSheet As Worksheet
Dim rnStart As Range, rnData As Range
Dim i As Long

Set wbBook = ThisWorkbook
Set wsSheet = wbBook.Worksheets(“Sheet1”)

With wsSheet
 ‘Make sure that the first row contains headings.
 Set rnStart = .Range(“A2”)
 Set rnData = .Range(.Range(“A2”), .Cells(.Rows.Count, 3).End(xlUp))
End With

Application.ScreenUpdating = True

www.xldennis.com

Chapter 14 Excel Power336

For i = 1 To 5
 ‘Here we filter the data with the first criterion.
 rnStart.AutoFilter Field:=1, Criteria1:=”AA” & i
 ‘Copy the filtered list
 rnData.SpecialCells(xlCellTypeVisible).Copy
 ‘Add a new worksheet to the active workbook.
 Worksheets.Add Before:=wsSheet
 ‘Name the added new worksheets.
 ActiveSheet.Name = “AA” & i
 ‘Paste the filtered list.
 Range(“A2”).PasteSpecial xlPasteValues
Next i

‘Reset the list to its original status.
rnStart.AutoFilter Field:=1

With Application
 ‘Reset the clipboard.
 .CutCopyMode = False
 .ScreenUpdating = False
End With

End Sub

Export Data to Word

This program transfers data from Excel to the first table found in a Word document. It uses

early binding, so a reference must be established in the VB Editor using Tools, References

to the Microsoft Word object library:

Sub Export_Data_Word_Table()
Dim wdApp As Word.Application
Dim wdDoc As Word.Document
Dim wdCell As Word.Cell
Dim i As Long
Dim wbBook As Workbook
Dim wsSheet As Worksheet
Dim rnData As Range
Dim vaData As Variant

Set wbBook = ThisWorkbook
Set wsSheet = wbBook.Worksheets(“Sheet1”)

With wsSheet
 Set rnData = .Range(“A1:A10”)
End With

‘Add the values in the range to a one-dimensional variant-array.
vaData = rnData.Value

‘Here we instantiate the new object.
Set wdApp = New Word.Application
‘Here the target document resides in the same folder as the workbook.
Set wdDoc = wdApp.Documents.Open(ThisWorkbook.Path & “\Test.docx”)

337Working with Cell Comments

‘Import data to the first table and in the first column of a ten-row table.
For Each wdCell In wdDoc.Tables(1).Columns(1).Cells
 i = i + 1
 wdCell.Range.Text = vaData(i, 1)
Next wdCell

‘Save and close the document.
With wdDoc
 .Save
 .Close
End With

‘Close the hidden instance of Microsoft Word.
wdApp.Quit
‘Release the external variables from the memory
Set wdDoc = Nothing
Set wdApp = Nothing

MsgBox “The data has been transfered to Test.docx.”, vbInformation

End Sub

Working with Cell Comments
Cell comments are often underused features of Excel. The following four utilities help you

to get the most out of cell comments.

List Comments

Excel allows the user to print the comments in a workbook, but it does not specify the

workbook or worksheet on which the comments appear, only the cell, as shown in Figure

14.1.

The following sample places comments, author, and location of each comment on a new

sheet for easy viewing, saving, or printing. Figure 14.2 shows a sample result.

Figure 14.1
Excel prints only the
origin cell address and its
comment.

Chapter 14 Excel Power338

Sub ListComments()
 Dim wb As Workbook
 Dim ws As Worksheet

 Dim cmt As Comment

 Dim cmtCount As Long

 cmtCount = 2

 On Error Resume Next
 Set ws = ActiveSheet
 If ws Is Nothing Then Exit Sub
 On Error GoTo 0

 Application.ScreenUpdating = False

 Set wb = Workbooks.Add(xlWorksheet)

 With wb.Sheets(1)
 .Range(“A1”) = “Author”
 .Range(“B1”) = “Book”
 .Range(“C1”) = “Sheet”
 .Range(“D1”) = “Range”
 .Range(“E1”) = “Comment”
 End With

 For Each cmt In ws.Comments
 With wb.Sheets(1)
 .Cells(cmtCount, 1) = cmt.author
 .Cells(cmtCount, 2) = cmt.Parent.Parent.Parent.Name
 .Cells(cmtCount, 3) = cmt.Parent.Parent.Name
 .Cells(cmtCount, 4) = cmt.Parent.Address
 .Cells(cmtCount, 5) = CleanComment(cmt.author, cmt.Text)
 End With

 cmtCount = cmtCount + 1
 Next

 wb.Sheets(1).UsedRange.WrapText = False

 Application.ScreenUpdating = True

 Set ws = Nothing
 Set wb = Nothing
End Sub

Private Function CleanComment(author As String, cmt As String) As String
 Dim tmp As String

Figure 14.2
Easily list all the informa-
tion pertaining to com-
ments.

339Working with Cell Comments

 tmp = Application.WorksheetFunction.Substitute(cmt, author & “:”, “”)
 tmp = Application.WorksheetFunction.Substitute(tmp, Chr(10), “”)

 CleanComment = tmp
End Function

Resize Comments

Excel doesn’t automatically resize cell comments. In addition, if you have several on a

sheet, as shown in Figure 14.3, it can be a hassle to resize them one at a time. The follow-

ing sample code resizes all the comment boxes on a sheet so that, when selected, the entire

comment is easily viewable, as shown in Figure 14.4.

Figure 14.3
By default, Excel doesn’t
size the comment boxes
to show all the entered
text.

Figure 14.4
Resize the comment
boxes to fit all the text.

Chapter 14 Excel Power340

Sub CommentFitter1()
Application.ScreenUpdating = False
Dim x As Range, y As Long

For Each x In Cells.SpecialCells(xlCellTypeComments)
 Select Case True
 Case Len(x.NoteText) <> 0
 With x.Comment
 .Shape.TextFrame.AutoSize = True
 If .Shape.Width > 250 Then
 y = .Shape.Width * .Shape.Height
 .Shape.Width = 150
 .Shape.Height = (y / 200) * 1.3
 End If
 End With
 End Select
Next x
Application.ScreenUpdating = True
End Sub

Resize Comments with Centering

This sample resizes all the comment boxes on a sheet by centering the comments (see

Figure 14.5).

Sub CommentFitter2()
Application.ScreenUpdating = False
Dim x As Range, y As Long

For Each x In Cells.SpecialCells(xlCellTypeComments)
 Select Case True
 Case Len(x.NoteText) <> 0
 With x.Comment
 .Shape.TextFrame.AutoSize = True
 If .Shape.Width > 250 Then
 y = .Shape.Width * .Shape.Height
 .Shape.ScaleHeight 0.9, msoFalse, msoScaleFromTopLeft
 .Shape.ScaleWidth 1#, msoFalse, msoScaleFromTopLeft
 End If

Figure 14.5
Center all the comments
on a sheet.

The Comment Box Resized and Centered

The Default Formatted

Comment Box

341Working with Cell Comments

 End With
 End Select
Next x
Application.ScreenUpdating = True
End Sub

Place a Chart in a Comment

A live chart cannot exist in a shape, but you can take a picture of the chart and load it into

the comment shape, as shown in Figure 14.6.

Figure 14.6
Place a chart in a cell
comment.

The steps to do this manually are as follows:

 1. Create and save the picture image you want the comment to display.

 2. If you have not already done so, create the comment and select the cell in which the

comment is located.

 3. From the Review tab, select Edit Comment, or right-click the cell and select Edit

Comment.

 4. Right-click the comment border and select Format Comment.

 5. Select the Colors and Lines tab, and click the down arrow belonging to the Color field

of the Fill section.

 6. Select Fill Effects, select the Picture tab, and then click the Select Picture button.

 7. Navigate to your desired image, select the image, and click OK twice.

The effect of having a “live chart” in a comment can be achieved if, for example, the code

is part of a SheetChange event when the chart’s source data is being changed. In addition,

business charts are updated often, so you might want a macro to keep the comment updated

and to avoid repeating the same steps.

Chapter 14 Excel Power342

The following macro does just that—it modifies the macro for file path name, chart name,

destination sheet, cell, and size of comment shape, depending on the size of the chart:

Sub PlaceGraph()
Dim x As String, z As Range

Application.ScreenUpdating = False

‘assign a temporary location to hold the image
x = “C:\XWMJGraph.gif”

‘assign the cell to hold the comment
Set z = Worksheets(“ChartInComment”).Range(“A3”)

‘delete any existing comment in the cell
On Error Resume Next
z.Comment.Delete
On Error GoTo 0

‘select and export the chart
ActiveSheet.ChartObjects(“Chart 1”).Activate
ActiveChart.Export x

‘add a new comment to the cell, set the size and insert the chart
With z.AddComment
 With .Shape
 .Height = 322
 .Width = 465
 .Fill.UserPicture x
 End With
End With

‘delete the temporary image
Kill x

Range(“A1”).Activate
Application.ScreenUpdating = True

Set z = Nothing
End Sub

Utilities to Wow Your Clients
The next four utilities will amaze and impress your clients.

Using Conditional Formatting to Highlight Selected Cell

Conditional formatting is used to highlight the row and column of the active cell to help

you visually locate it, as shown in Figure 14.7.

www.xcelfiles.com

343Utilities to Wow Your Clients

Const iInternational As Integer = Not (0)

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
Dim iColor As Integer
‘// On error resume in case
‘// user selects a range of cells
On Error Resume Next
iColor = Target.Interior.ColorIndex
‘// Leave On Error ON for Row offset errors

If iColor < 0 Then
 iColor = 36
Else
 iColor = iColor + 1
End If

‘// Need this test in case font color is the same
If iColor = Target.Font.ColorIndex Then iColor = iColor + 1

Cells.FormatConditions.Delete

‘// Horizontal color banding
With Range(“A” & Target.Row, Target.Address) ‘Rows(Target.Row)
 .FormatConditions.Add Type:=2, Formula1:=iInternational ‘Or just 1 ‘”TRUE”
 .FormatConditions(1).Interior.ColorIndex = iColor
End With

‘// Vertical color banding
With Range(Target.Offset(1 - Target.Row, 0).Address & “:” & _
 Target.Offset(-1, 0).Address)
 .FormatConditions.Add Type:=2, Formula1:=iInternational ‘Or just 1 ‘”TRUE”
 .FormatConditions(1).Interior.ColorIndex = iColor

Do not use this method if you already have conditional formats on the worksheet. Any existing con-

ditional formats will be overwritten. In addition, this program clears the Clipboard. Therefore, it is not

possible to use this method while doing copy, cut, or paste.

C A U T I O N

Figure 14.7
Use conditional format-
ting to highlight the
selected cell in a table.

Chapter 14 Excel Power344

End With

End Sub

Highlight Selected Cell Without Using Conditional Formatting

This example visually highlights the active cell without using conditional formatting when

the keyboard arrow keys are used to move around the sheet.

Place the following in a standard module:

Dim strCol As String
Dim iCol As Integer
Dim dblRow As Double

Sub HighlightRight()
 HighLight 0, 1
End Sub

Sub HighlightLeft()
 HighLight 0, -1
End Sub

Sub HighlightUp()
 HighLight -1, 0, -1
End Sub

Sub HighlightDown()
 HighLight 1, 0, 1
End Sub

Sub HighLight(dblxRow As Double, iyCol As Integer, Optional dblZ As _
Double = 0)

On Error GoTo NoGo
strCol = Mid(ActiveCell.Offset(dblxRow, iyCol).Address, _
 InStr(ActiveCell.Offset(dblxRow, iyCol).Address, “$”) + 1, _
 InStr(2, ActiveCell.Offset(dblxRow, iyCol).Address, “$”) - 2)
iCol = ActiveCell.Column
dblRow = ActiveCell.Row

Application.ScreenUpdating = False

With Range(strCol & “:” & strCol & “,” & dblRow + dblZ & “:” & dblRow + dblZ)
 .Select
 Application.ScreenUpdating = True
 .Item(dblRow + dblxRow).Activate
End With

NoGo:
End Sub

Sub ReSet() ‘manual reset
 Application.OnKey “{RIGHT}”
 Application.OnKey “{LEFT}”

345Utilities to Wow Your Clients

 Application.OnKey “{UP}”
 Application.OnKey “{DOWN}”
End Sub

Place the following in the ThisWorkbook module:

Private Sub Workbook_Open()
 Application.OnKey “{RIGHT}”, “HighlightRight”
 Application.OnKey “{LEFT}”, “HighlightLeft”
 Application.OnKey “{UP}”, “HighlightUp”
 Application.OnKey “{DOWN}”, “HighlightDown”
 Application.OnKey “{DEL}”, “DisableDelete”
End Sub

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 Application.OnKey “{RIGHT}”
 Application.OnKey “{LEFT}”
 Application.OnKey “{UP}”
 Application.OnKey “{DOWN}”
 Application.OnKey “{DEL}”
End Sub

Custom Transpose Data

You have a report where the data is set up in rows (see Figure 14.8). However, you need the

data formatted so each date and batch is in a single row, with the Value and Finish Position

going across. Note that the Finish Position is not shown in Figure 14.9. The following

program does a customized data transposition based on the specified column, as shown in

Figure 14.9.

Figure 14.8
The original data has
similar records in separate
rows.

Chapter 14 Excel Power346

Sub TransposeData()
Dim shOrg As Worksheet, shRes As Worksheet
Dim rngStart As Range, rngPaste As Range
Dim lngData As Long

Application.ScreenUpdating = False
On Error Resume Next
Application.DisplayAlerts = False
Sheets(“TransposeResult”).Delete
Application.DisplayAlerts = True
On Error GoTo 0

On Error GoTo terminate

Set shOrg = Sheets(“TransposeData”)
Set shRes = Sheets.Add(After:=shOrg)
shRes.Name = “TransposeResult”
With shOrg
 ‘--Sort
 .Cells.CurrentRegion.Sort Key1:=.[B2], Order1:=1, Key2:=.[C2], _
 Order2:=1, Key3:=.[E2], Order3:=1, Header:=xlYes
 ‘--Copy title
 .Rows(1).Copy shRes.Rows(1)
 ‘--Set start range
 Set rngStart = .[C2]
 Do Until IsEmpty(rngStart)
 Set rngPaste = shRes.Cells(shRes.Rows.Count, 1).End(xlUp).Offset(1)
 lngData = GetNextRange(rngStart)
 rngStart.Offset(, -2).Resize(, 5).Copy rngPaste

 ‘Copy to V1 toV14
 rngStart.Offset(, 2).Resize(lngData).Copy
 rngPaste.Offset(, 5).PasteSpecial Paste:=xlAll, Operation:=xlNone, _
 SkipBlanks:=False, Transpose:=True
 ‘Copy to V1FP to V14FP
 rngStart.Offset(, 1).Resize(lngData).Copy
 rngPaste.Offset(, 19).PasteSpecial Paste:=xlAll, Operation:=xlNone, _
 SkipBlanks:=False, Transpose:=True
 Set rngStart = rngStart.Offset(lngData)
 Loop
End With

Application.Goto shRes.[A1]

Figure 14.9
The formatted data
transposes the data so
that identical dates and
batches are merged into a
single row.

347Utilities to Wow Your Clients

With shRes
 .Cells.Columns.AutoFit
 .Columns(“D:E”).Delete shift:=xlToLeft
End With

Application.ScreenUpdating = True
Application.CutCopyMode = False

If MsgBox(“Do you want to delete the original worksheet?”, 36) = 6 Then
 Application.DisplayAlerts = False
 Sheets(“TransposeData”).Delete
 Application.DisplayAlerts = True
End If

Set rngPaste = Nothing
Set rngStart = Nothing
Set shRes = Nothing

Exit Sub

terminate:
End Sub

Function GetNextRange(ByVal rngSt As Range) As Long
 Dim i As Long
 i = 0

 Do Until rngSt.Value <> rngSt.Offset(i).Value
 i = i + 1
 Loop

 GetNextRange = i
End Function

Select/Deselect Noncontiguous Cells

Ordinarily, to deselect a single cell or range on a sheet, you must click an unselected cell to

deselect all cells and then start over by reselecting all the correct cells. This is inconvenient

if you need to reselect a lot of noncontiguous cells.

This sample adds two new options to the contextual menu of a selection: Deselect

ActiveCell and Deselect ActiveArea. With the noncontiguous cells selected, hold down

the Ctrl key, click the cell you want to deselect to make it active, release the Ctrl key, and

then right-click the cell you want to deselect. The contextual menu shown in Figure 14.10

appears. Click the menu item that deselects either that one active cell or the contiguously

selected area of which it is a part.

Chapter 14 Excel Power348

Enter the following procedures in a standard module:

Sub ModifyRightClick()
‘add the new options to the right-click menu
Dim O1 As Object, O2 As Object

‘delete the options if they exist already
On Error Resume Next
With CommandBars(“Cell”)
 .Controls(“Deselect ActiveCell”).Delete
 .Controls(“Deselect ActiveArea”).Delete
End With
On Error GoTo 0

‘add the new options
Set O1 = CommandBars(“Cell”).Controls.Add

With O1
 .Caption = “Deselect ActiveCell”
 .OnAction = “DeselectActiveCell”
End With

Set O2 = CommandBars(“Cell”).Controls.Add

With O2
 .Caption = “Deselect ActiveArea”
 .OnAction = “DeselectActiveArea”
End With

End Sub

Sub DeselectActiveCell()

Figure 14.10
The ModifyRight
Click procedure pro-
vides a custom contextual
menu for deselecting
noncontiguous cells.

349Techniques for VBA Pros

Dim x As Range, y As Range

If Selection.Cells.Count > 1 Then
 For Each y In Selection.Cells
 If y.Address <> ActiveCell.Address Then
 If x Is Nothing Then
 Set x = y
 Else
 Set x = Application.Union(x, y)
 End If
 End If
 Next y
 If x.Cells.Count > 0 Then
 x.Select
 End If
End If

End Sub

Sub DeselectActiveArea()
Dim x As Range, y As Range

If Selection.Areas.Count > 1 Then
 For Each y In Selection.Areas
 If Application.Intersect(ActiveCell, y) Is Nothing Then
 If x Is Nothing Then
 Set x = y
 Else
 Set x = Application.Union(x, y)
 End If
 End If
 Next y
 x.Select
End If
End Sub

Add the following procedures to the ThisWorkbook module:

Private Sub Workbook_Activate()
ModifyRightClick
End Sub

Private Sub Workbook_Deactivate()
Application.CommandBars(“Cell”).Reset
End Sub

Techniques for VBA Pros
The next 10 utilities amaze me. In the various message board communities on the Internet,

VBA programmers are constantly coming up with new ways to do something faster or bet-

ter. When someone posts some new code that obviously runs circles around the prior gen-

erally accepted best code, everyone benefits.

Pivot Table Drill-Down

Chapter 14 Excel Power350

When you are double-clicking the data section, a pivot table’s default behavior is to insert

a new worksheet and display that drill-down information on the new sheet. The following

example serves as an option for convenience, to keep the drilled-down recordsets on the

same sheet as the pivot table (see Figure 14.11) and letting you delete them as you want.

To use this macro, double-click the data section or the Totals section to create stacked drill-

down recordsets in the next available row of this sheet. To delete any drill-down recordsets

you have created, double-click anywhere in their respective current region.

Figure 14.11
Show the drill-down
recordset on the same
sheet as the pivot table.

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As _
 Boolean)
Application.ScreenUpdating = False
Dim LPTR&

With ActiveSheet.PivotTables(1).DataBodyRange
 LPTR = .Rows.Count + .Row - 1
End With

Dim PTT As Integer
On Error Resume Next
PTT = Target.PivotCell.PivotCellType
If Err.Number = 1004 Then
 Err.Clear
 If Not IsEmpty(Target) Then
 If Target.Row > Range(“A1”).CurrentRegion.Rows.Count + 1 Then
 Cancel = True
 With Target.CurrentRegion
 .Resize(.Rows.Count + 1).EntireRow.Delete
 End With
 End If
 Else
 Cancel = True
 End If
Else
 CS = ActiveSheet.Name
End If
Application.ScreenUpdating = True
End Sub

Speedy Page Setup

http://www.juanpg.com

351Techniques for VBA Pros

The following examples compare the runtimes of variations on changing the margins from

the defaults to 1.5 inches and the footer/header to 1 inch in the Page Setup. The macro

recorder was used to create Macro1. Macros 2, 3, and 4 show how the recorded code’s run-

time can be decreased. Figure 14.12 shows the results of the speed test running each varia-

tion.

Figure 14.12
Page setup speed tests.

Sub Macro1()
‘
‘ Macro1 Macro
‘ Macro recorded 11/3/2009
‘
 With ActiveSheet.PageSetup
 .PrintTitleRows = “”
 .PrintTitleColumns = “”
 End With
 ActiveSheet.PageSetup.PrintArea = “”
 With ActiveSheet.PageSetup
 .LeftHeader = “”
 .CenterHeader = “”
 .RightHeader = “”
 .LeftFooter = “”
 .CenterFooter = “”
 .RightFooter = “”
 .LeftMargin = Application.InchesToPoints(1.5)
 .RightMargin = Application.InchesToPoints(1.5)
 .TopMargin = Application.InchesToPoints(1.5)
 .BottomMargin = Application.InchesToPoints(1.5)
 .HeaderMargin = Application.InchesToPoints(1)
 .FooterMargin = Application.InchesToPoints(1)
 .PrintHeadings = False
 .PrintGridlines = False
 .PrintComments = xlPrintNoComments

Chapter 14 Excel Power352

 .PrintQuality = -3
 .CenterHorizontally = False
 .CenterVertically = False
 .Orientation = xlPortrait
 .Draft = False
 .PaperSize = xlPaperLetter
 .FirstPageNumber = 1
 .Order = xlDownThenOver
 .BlackAndWhite = False
 .Zoom = False
 .FitToPagesWide = 1
 .FitToPagesTall = 1
 .PrintErrors = xlPrintErrorsDisplayed
 .OddAndEvenPagesHeaderFooter = False
 .DifferentFirstPageHeaderFooter = False
 .ScaleWithDocHeaderFooter = True
 .AlignMarginsHeaderFooter = False
 .EvenPage.LeftHeader.Text = “”
 .EvenPage.CenterHeader.Text = “”
 .EvenPage.RightHeader.Text = “”
 .EvenPage.LeftFooter.Text = “”
 .EvenPage.CenterFooter.Text = “”
 .EvenPage.RightFooter.Text = “”
 .FirstPage.LeftHeader.Text = “”
 .FirstPage.CenterHeader.Text = “”
 .FirstPage.RightHeader.Text = “”
 .FirstPage.LeftFooter.Text = “”
 .FirstPage.CenterFooter.Text = “”
 .FirstPage.RightFooter.Text = “”
 End With
 Application.PrintCommunication = True
End Sub

The macro recorder is doing a lot of extra work, which requires extra processing time.

Considering this, along with the fact that the PageSetup object is one of the slowest objects

to update, you can have quite a mess. So, a cleaner version that uses just the Delete key to

clean out extraneous lines follows:

Sub Macro1_Version2()
 With ActiveSheet.PageSetup
 .LeftMargin = Application.InchesToPoints(1.5)
 .RightMargin = Application.InchesToPoints(1.5)
 .TopMargin = Application.InchesToPoints(1.5)
 .BottomMargin = Application.InchesToPoints(1.5)
 .HeaderMargin = Application.InchesToPoints(1)
 .FooterMargin = Application.InchesToPoints(1)
 End With
End Sub

Okay, this runs faster than Macro1. The average reduction is around 70 percent on some

simple tests! However, it can be improved even further.

As noted earlier, the PageSetup object takes a long time to process. Therefore, if you reduce

the number of operations that VBA has to make and include some IF functions to update

only the properties that require changing, you can get better results.

353Techniques for VBA Pros

In the following case, the Application.InchesToPoints function was hard-coded to the

inches value. The third version of Macro1 looks like this:

Sub Macro1_Version3()
 With ActiveSheet.PageSetup
 If .LeftMargin <> 108 Then .LeftMargin = 108
 If .RightMargin <> 108 Then .RightMargin = 108
 If .TopMargin <> 108 Then .TopMargin = 108
 If .BottomMargin <> 108 Then .BottomMargin = 108
 If .HeaderMargin <> 72 Then .HeaderMargin = 72
 If .FooterMargin <> 72 Then .FooterMargin = 72
 End With
End Sub

You will see the difference on this third version when you are not changing all the default

margins.

Another option can reduce the runtime by more than 95 percent. This option uses the

PAGE.SETUP XLM method. The necessary parameters are left, right, top, bot, head_margin,

and foot_margin. These parameters are measured in inches, not points. Therefore, using

the same margins that we have been changing already, a fourth version of Macro1 looks like

this:

Sub Macro1_Version4()
 Dim St As String
 St = “PAGE.SETUP(, , “ & _
 “1.5, 1.5, 1.5, 1.5” & _
 “, 0, False, False, False, 1, 1, True, 1, 1,False, , _
 “ & “1, 1” & _
 “, False)”
 Application.ExecuteExcel4Macro St
End Sub

The second and fourth lines of St correspond to these parameters. However, you need to follow some

simple precautions. First, this macro relies on XLM language, which is still included in Excel for back-

ward compatibility. However, we do not know when Microsoft will drop it. Second, be care-ful when

setting the parameters of PAGE.SETUP because if one of them is wrong, the PAGE.SETUP is not

executed and does not generate an error, which can possibly leave you with the wrong page setup.

C A U T I O N

Calculating Time to Execute Code
You might wonder how to calculate elapsed time down to the thousandth of a second, as

shown earlier in Figure 14.12.

This is the code used to generate the time results for the macros in this section:

Public Declare Function QueryPerformanceFrequency _
 Lib “kernel32” (lpFrequency As Currency) As Long

Chapter 14 Excel Power354

Public Declare Function QueryPerformanceCounter _
 Lib “kernel32.dll” (lpPerformanceCount As Currency) As Long

Sub CalculateTime()
 Dim Ar(1 To 20, 1 To 4) As Currency, WS As Worksheet
 Dim n As Currency, str As Currency, fin As Currency
 Dim y As Currency

 Dim i As Long, j As Long

 Application.ScreenUpdating = False
 For i = 1 To 4
 For j = 1 To 20
 Set WS = ThisWorkbook.Sheets.Add
 WS.Range(“A1”).Value = 1
 QueryPerformanceFrequency y
 QueryPerformanceCounter str
 Select Case i
 Case 1: Macro1
 Case 2: Macro1_Version2
 Case 3: Macro1_Version3
 Case 4: Macro1_Version4
 End Select
 QueryPerformanceCounter fin
 Application.DisplayAlerts = False
 WS.Delete
 Application.DisplayAlerts = True
 n = (fin - str)
 Ar(j, i) = CCur(Format(n, “##########.############”) / y)
 Next j
 Next i
 With Range(“A1”).Resize(1, 4)
 .Value = Array(“Macro1”, “Macro2”, “Macro3”, “ Macro4”)
 .Font.Bold = True
 End With
 Range(“A2”).Resize(20, 4).Value = Ar

 With Range(“A22”).Resize(1, 4)
 .FormulaR1C1 = “=AVERAGE(R2C:R21C)”
 .Offset(1).FormulaR1C1 = “=RANK(R22C,R22C1:R22C4,1)”
 .Resize(2).Font.Bold = True
 End With
 Application.ScreenUpdating = True
End Sub

Custom Sort Order

By default, Excel enables you to sort lists numerically or alphabetically, but sometimes that

is not what is needed. For example, a client might need each day’s sales data sorted by the

default division order of belts, handbags, watches, wallets, and everything else. This sample

uses a custom sort order list to sort a range of data into default division order and then

deletes the custom sort order. Figure 14.13 shows the results.

355Techniques for VBA Pros

Sub CustomSort()

 ‘ add the custom list to Custom Lists
 Application.AddCustomList ListArray:=Range(“I1:I5”)

 ‘ get the list number
 nIndex = Application.GetCustomListNum(Range(“I1:I5”).Value)

 ‘ Now, we could sort a range with the custom list.
 ‘ Note, we should use nIndex + 1 as the custom list number here,
 ‘ for the first one is Normal order
 Range(“A2:C16”).Sort Key1:=Range(“B2”), Order1:=xlAscending, _
 Header:=xlNo, Orientation:=xlSortColumns, _
 OrderCustom:=nIndex + 1
 Range(“A2:C16”).Sort Key1:=Range(“A2”), Order1:=xlAscending, _
 Header:=xlNo, Orientation:=xlSortColumns

 ‘ At the end, we should remove this custom list...
 Application.DeleteCustomList nIndex
End Sub

Cell Progress Indicator

I have to admit, the new conditional formatting options in Excel such as data bars are fantastic.

However, there still isn’t an option for a visual like that shown in Figure 14.14. The following

example builds a progress indicator in Column C based on entries in Columns A and B.

Figure 14.13
When you use the macro,
the list in A:C is sorted
first by date, then by
the custom sort list in
Column I.

Figure 14.14
Use indicators in cells to
show progress.

Chapter 14 Excel Power356

Private Sub Worksheet_Change(ByVal Target As Range)
If Target.Column > 2 Or Target.Cells.Count > 1 Then Exit Sub
If Application.IsNumber(Target.Value) = False Then
 Application.EnableEvents = False
 Application.Undo
 Application.EnableEvents = True
 MsgBox “Numbers only please.”
 Exit Sub
End If
Select Case Target.Column
 Case 1
 If Target.Value > Target.Offset(0, 1).Value Then
 Application.EnableEvents = False
 Application.Undo
 Application.EnableEvents = True
 MsgBox “Value in column A may not be larger than value in column _
 B.”
 Exit Sub
 End If
 Case 2
 If Target.Value < Target.Offset(0, -1).Value Then
 Application.EnableEvents = False
 Application.Undo
 Application.EnableEvents = True
 MsgBox “Value in column B may not be smaller “ & _
 “than value in column A.”
 Exit Sub
 End If
End Select
Dim x As Long
x = Target.Row
Dim z As String
z = Range(“B” & x).Value - Range(“A” & x).Value
With Range(“C” & x)
 .Formula = “=IF(RC[-1]<=RC[-2],REPT(“”n””,RC[-1]) _
 &REPT(“”n””,RC[-2]-RC[-1]),REPT(“”n””,RC[-2]) _
 &REPT(“”o””,RC[-1]-RC[-2]))”
 .Value = .Value
 .Font.Name = “Wingdings”
 .Font.ColorIndex = 1
 .Font.Size = 10
 If Len(Range(“A” & x)) <> 0 Then
 .Characters(1, (.Characters.Count - z)).Font.ColorIndex = 3
 .Characters(1, (.Characters.Count - z)).Font.Size = 12
 End If
End With
End Sub

Protected Password Box

357Techniques for VBA Pros

Using an input box for password protection has a major security flaw: The characters being

entered are easily viewable. This program changes the characters to asterisks as they are

entered—just like a real password field (see Figure 14.15).

Figure 14.15
Use an input box as a
secure password field.

Private Declare Function CallNextHookEx Lib “user32” (ByVal hHook As Long, _
ByVal ncode As Long, ByVal wParam As Long, lParam As Any) As Long

Private Declare Function GetModuleHandle Lib “kernel32” _
 Alias “GetModuleHandleA” (ByVal lpModuleName As String) As Long

Private Declare Function SetWindowsHookEx Lib “user32” _
 Alias “SetWindowsHookExA” _
 (ByVal idHook As Long, ByVal lpfn As Long, _
 ByVal hmod As Long,ByVal dwThreadId As Long) As Long

Private Declare Function UnhookWindowsHookEx Lib “user32” _
 (ByVal hHook As Long) As Long

Private Declare Function SendDlgItemMessage Lib “user32” _
 Alias “SendDlgItemMessageA” _
 (ByVal hDlg As Long, _
 ByVal nIDDlgItem As Long, ByVal wMsg As Long, _
 ByVal wParam As Long, ByVal lParam As Long) As Long

Private Declare Function GetClassName Lib “user32” _
 Alias “GetClassNameA” (ByVal hwnd As Long, _
 ByVal lpClassName As String, _
 ByVal nMaxCount As Long) As Long

Private Declare Function GetCurrentThreadId _
 Lib “kernel32” () As Long

‘Constants to be used in our API functions
Private Const EM_SETPASSWORDCHAR = &HCC
Private Const WH_CBT = 5
Private Const HCBT_ACTIVATE = 5
Private Const HC_ACTION = 0

Private hHook As Long

Public Function NewProc(ByVal lngCode As Long, _
 ByVal wParam As Long, ByVal lParam As Long) As Long
 Dim RetVal

Chapter 14 Excel Power358

 Dim strClassName As String, lngBuffer As Long

 If lngCode < HC_ACTION Then
 NewProc = CallNextHookEx(hHook, lngCode, wParam, lParam)
 Exit Function
 End If

 strClassName = String$(256, “ “)
 lngBuffer = 255

 If lngCode = HCBT_ACTIVATE Then ‘A window has been activated

 RetVal = GetClassName(wParam, strClassName, lngBuffer)

 ‘Check for class name of the Inputbox
 If Left$(strClassName, RetVal) = “#32770” Then
 ‘Change the edit control to display the password character *.
 ‘You can change the Asc(“*”) as you please.
 SendDlgItemMessage wParam, &H1324, EM_SETPASSWORDCHAR, _
 Asc(“*”), &H0
 End If

 End If

 ‘This line will ensure that any other hooks that may be in place are
 ‘called correctly.
 CallNextHookEx hHook, lngCode, wParam, lParam

End Function

Public Function InputBoxDK(Prompt, Optional Title, _
 Optional Default, Optional XPos, _
Optional YPos, Optional HelpFile, Optional Context) As String
 Dim lngModHwnd As Long, lngThreadID As Long

 lngThreadID = GetCurrentThreadId
 lngModHwnd = GetModuleHandle(vbNullString)

 hHook = SetWindowsHookEx(WH_CBT, AddressOf NewProc, lngModHwnd, _
 lngThreadID)
 On Error Resume Next
 InputBoxDK = InputBox(Prompt, Title, Default, XPos, YPos, HelpFile, _
 Context)
 UnhookWindowsHookEx hHook

End Function

Sub PasswordBox()
If InputBoxDK(“Please enter password”, “Password Required”) <> “password” Then
 MsgBox “Sorry, that was not a correct password.”
 Else
 MsgBox “Correct Password! Come on in.”
 End If
End Sub

359Techniques for VBA Pros

Change Case

Word can change the case of selected text, but that capability is notably lacking in Excel.

This program enables the Excel user to change the case of text in any selected range, as

shown in Figure 14.16.

Figure 14.16
You can now change the
case of words, just like
in Word.

Sub TextCaseChange()
Dim RgText As Range
Dim oCell As Range
Dim Ans As String
Dim strTest As String
Dim sCap As Integer, _
 lCap As Integer, _
 i As Integer

‘// You need to select a range to alter first!

Again:
Ans = Application.InputBox(“[L]owercase” & vbCr & “[U]ppercase” & vbCr & _
 “[S]entence” & vbCr & “[T]itles” & vbCr & “[C]apsSmall”, _
 “Type in a Letter”, Type:=2)

If Ans = “False” Then Exit Sub
If InStr(1, “LUSTC”, UCase(Ans), vbTextCompare) = 0 _
 Or Len(Ans) > 1 Then GoTo Again

On Error GoTo NoText
If Selection.Count = 1 Then
 Set RgText = Selection
Else
 Set RgText = Selection.SpecialCells(xlCellTypeConstants, 2)
End If
On Error GoTo 0

For Each oCell In RgText
 Select Case UCase(Ans)
 Case “L”: oCell = LCase(oCell.Text)
 Case “U”: oCell = UCase(oCell.Text)
 Case “S”: oCell = UCase(Left(oCell.Text, 1)) & _
 LCase(Right(oCell.Text, Len(oCell.Text) - 1))
 Case “T”: oCell = Application.WorksheetFunction.Proper(oCell.Text)
 Case “C”

Chapter 14 Excel Power360

 lCap = oCell.Characters(1, 1).Font.Size
 sCap = Int(lCap * 0.85)
 ‘Small caps for everything.
 oCell.Font.Size = sCap
 oCell.Value = UCase(oCell.Text)
 strTest = oCell.Value
 ‘Large caps for 1st letter of words.
 strTest = Application.Proper(strTest)
 For i = 1 To Len(strTest)
 If Mid(strTest, i, 1) = UCase(Mid(strTest, i, 1)) Then
 oCell.Characters(i, 1).Font.Size = lCap
 End If
 Next i
 End Select
Next

Exit Sub
NoText:
MsgBox “No text in your selection @ “ & Selection.Address

End Sub

Selecting with SpecialCells

Typically, when you want to find certain values, text, or formulas in a range, the range is

selected and each cell is tested. The following example shows how SpecialCells can be

used to select only the desired cells. Having fewer cells to check will speed up your code.

The following code ran in the blink of an eye on my machine. However, the version that

checked each cell in the range (A1:Z20000) took 14 seconds—an eternity in the automation

world!

Sub SpecialRange()
Dim TheRange As Range
Dim oCell As Range

 Set TheRange = Range(“A1:Z20000”).SpecialCells(__
 xlCellTypeConstants, xlTextValues)

 For Each oCell In TheRange
 If oCell.Text = “Your Text” Then
 MsgBox oCell.Address
 MsgBox TheRange.Cells.Count
 End If
 Next oCell

End Sub

ActiveX Right-Click Menu

361Techniques for VBA Pros

There is no built-in menu for the right-click event of ActiveX objects on a sheet. This is

a utility for that, using a command button for the example in Figure 14.17. Set the Take

Focus on Click property of the command button to False.

Figure 14.17
Customize the contextual
(right-click) menu of an
ActiveX control.

Place the following in the ThisWorkbook module:

Private Sub Workbook_Open()
With Application
 .CommandBars(“Cell”).Reset
 .WindowState = xlMaximized
 .Goto Sheet1.Range(“A1”), True
End With
End Sub

Private Sub Workbook_Activate()
Application.CommandBars(“Cell”).Reset
End Sub

Private Sub Workbook_SheetBeforeRightClick(ByVal Sh As Object, _
 ByVal Target As Range, Cancel As Boolean)
Application.CommandBars(“Cell”).Reset
End Sub

Private Sub Workbook_Deactivate()
Application.CommandBars(“Cell”).Reset
End Sub

Private Sub Workbook_BeforeClose(Cancel As Boolean)
With Application
 .CommandBars(“Cell”).Reset
 .WindowState = xlMaximized
 .Goto Sheet1.Range(“A1”), True
End With
ThisWorkbook.Save
End Sub

Place the following in a standard module:

Sub MyRightClickMenu()
Application.CommandBars(“Cell”).Reset
Dim cbc As CommandBarControl
 For Each cbc In Application.CommandBars(“cell”).Controls
 cbc.Visible = False
 Next cbc
With Application.CommandBars(“Cell”).Controls.Add(temporary:=True)
 .Caption = “My Macro 1”
 .OnAction = “Test1”
 End With
With Application.CommandBars(“Cell”).Controls.Add(temporary:=True)
 .Caption = “My Macro 2”

Chapter 14 Excel Power362

 .OnAction = “Test2”
 End With
With Application.CommandBars(“Cell”).Controls.Add(temporary:=True)
 .Caption = “My Macro 3”
 .OnAction = “Test3”
 End With
Application.CommandBars(“Cell”).ShowPopup
End Sub

Sub Test1()
MsgBox “This is the Test1 macro from the ActiveX object’s custom “ & _
 “right-click event menu.”, , “’’My Macro 1’’ menu item.”
End Sub

Sub Test2()
MsgBox “This is the Test2 macro from the ActiveX object’s custom “ & _
 “right-click event menu.”, , “’’My Macro 2’’ menu item.”
End Sub

Sub Test3()
MsgBox “This is the Test3 macro from the ActiveX object’s custom “ & _
 “right-click event menu.”, , “’’My Macro 3’’ menu item.”
End Sub

Cool Applications
These last samples are interesting applications that you might be able to incorporate into

your own projects.

Historical Stock/Fund Quotes

The following code retrieves the average of a valid stock ticker or the close of a fund for the

specified date (see Figure 14.18).

Private Sub GetQuote()
Dim ie As Object, lCharPos As Long, sHTML As String
Dim HistDate As Date, HighVal As String, LowVal As String
Dim cl As Range

Set cl = ActiveCell
HistDate = cl(, 0)

If Intersect(cl, Range(“C2:C” & Cells.Rows.Count)) Is Nothing Then
 MsgBox “You must select a cell in column C.”

Figure 14.18
Retrieve stock
information.

363Cool Applications

 Exit Sub
End If

If Not CBool(Len(cl(, -1))) Or Not CBool(Len(cl(, 0))) Then
 MsgBox “You must enter a symbol and date.”
 Exit Sub
End If

Set ie = CreateObject(“InternetExplorer.Application”)

With ie
 .Navigate _
 http://bigcharts.marketwatch.com/historical & _
 “/default.asp?detect=1&symbol=” _
 & cl(, -1) & “&close_date=” & Month(HistDate) & “%2F” & _
 Day(HistDate) & “%2F” & Year(HistDate) & “&x=31&y=26”
 Do While .Busy And .ReadyState <> 4
 DoEvents
 Loop
 sHTML = .Document.body.innertext
 .Quit
End With

Set ie = Nothing

lCharPos = InStr(1, sHTML, “High:”, vbTextCompare)
If lCharPos Then HighVal = Mid$(sHTML, lCharPos + 5, 15)

If Not Left$(HighVal, 3) = “n/a” Then
 lCharPos = InStr(1, sHTML, “Low:”, vbTextCompare)
 If lCharPos Then LowVal = Mid$(sHTML, lCharPos + 4, 15)
 cl.Value = (Val(LowVal) + Val(HighVal)) / 2
Else: lCharPos = InStr(1, sHTML, “Closing Price:”, vbTextCompare)
 cl.Value = Val(Mid$(sHTML, lCharPos + 14, 15))
End If

Set cl = Nothing
End Sub

Using VBA Extensibility to Add Code to New Workbooks
You have a macro that moves data to a new workbook for the regional managers. What

if you need to also copy macros to the new workbook? You can use Visual Basic for

Application Extensibility to import modules to a workbook or to actually write lines of code

to the workbook.

To use any of these examples, you must first open VB Editor, select References from

the Tools menu, and select the reference for Microsoft Visual Basic for Applications

Extensibility 5.3. You must also trust access to VBA by going to the Developer tab, choos-

ing Macro Security, and checking Trust Access to the VBA Project Object Model.

The easiest way to use VBA Extensibility is to export a complete module or userform

from the current project and import it to the new workbook. Perhaps you have an applica-

tion with thousands of lines of code. You want to create a new workbook with data for the

Chapter 14 Excel Power364

regional manager and give her three macros to enable custom formatting and printing.

Place all of these macros in a module called modToRegion. Macros in this module also call

the frmRegion userform. The following code transfers this code from the current workbook

to the new workbook:

Sub MoveDataAndMacro()
 Dim WSD as worksheet
 Set WSD = Worksheets(“Report”)
 ‘ Copy Report to a new workbook
 WSD.Copy
 ‘ The active workbook is now the new workbook
 ‘ Delete any old copy of the module from C
 On Error Resume Next
 ‘ Delete any stray copies from hard drive
 Kill (“C:\ModToRegion.bas”)
 Kill (“C:\frmRegion.frm”)
 On Error GoTo 0
 ‘ Export module & form from this workbook
 ThisWorkbook.VBProject.VBComponents(“ModToRegion”).Export _
 (“C:\ModToRegion.bas”)
 ThisWorkbook.VBProject.VBComponents(“frmRegion”).Export _
 (“C:\frmRegion.frm”)
 ‘ Import to new workbook
 ActiveWorkbook.VBProject.VBComponents.Import (“C:\ModToRegion.bas”)
 ActiveWorkbook.VBProject.VBComponents.Import (“C:\frmRegion.frm”)
 On Error Resume Next
 Kill (“C:\ModToRegion.bas”)
 Kill (“C:\frmRegion.bas”)
 On Error GoTo 0
End Sub

The preceding method will work if you need to move modules or userforms to a new work-

book. However, what if you need to write some code to the Workbook_Open macro in

the ThisWorkbook module? There are two tools to use. The Lines method allows you to

return a particular set of code lines from a given module. The InsertLines method allows

you to insert code lines to a new module.

Sub MoveDataAndMacro()
 Dim WSD as worksheet
 Dim WBN as Workbook
 Dim WBCodeMod1 As Object, WBCodeMod2 As Object
 Set WSD = Worksheets(“Report”)
 ‘ Copy Report to a new workbook
 WSD.Copy
 ‘ The active workbook is now the new workbook
 Set WBN = ActiveWorkbook
 ‘ Copy the Workbook level Event handlers

With each call to InsertLines, you must insert a complete macro. Excel will attempt to compile

the code after each call to InsertLines. If you insert lines that do not completely compile, Excel

may crash with a general protection fault (GPF).

C A U T I O N

365Next Steps

 Set WBCodeMod1 = ThisWorkbook.VBProject.VBComponents(“ThisWorkbook”) _
 .CodeModule
 Set WBCodeMod2 = WBN.VBProject.VBComponents(“ThisWorkbook”).CodeModule
 WBCodeMod2.insertlines 1, WBCodeMod1.Lines(1, WBCodeMod1.countoflines)
End Sub

Introduction to Data Visualizations
The data visualization tools were introduced in

Excel 2007. However, Microsoft has made further

improvements to these tools in Excel 2010.Data

visualizations appear on a drawing layer that can

hold icon sets, data bars, color scales, and now spar-

klines. In Excel 2010, you have new icon sets and

new options for data bars. Unlike SmartArt graph-

ics, Microsoft exposed the entire object model for

the data visualization tools, so you can use VBA to

add data visualizations to your reports.

 See Chapter 17, “Dashboarding with Sparklines in Excel 2010,” for
more information about sparklines.

Excel 2010 provides a variety of data visualizations.

A description of each appears here, with an example

shown in Figure 15.1:

 ■ Data bars—The data bar adds an in-cell

bar chart to each cell in a range. The largest

numbers have the largest bars, and the small-

est numbers have the smallest bars. You can

control the bar color as well as the values that

should receive the smallest and largest bar.

New in Excel 2010, bars can be solid or a gra-

dient. The gradient bars can have a border. In

addition, negative bars can appear for the first

time.

 ■ Color scales—Excel applies a color to each

cell from among a two- or three-color gradient.

The two-color gradients are best for reports

that are presented in monochrome. The three-

color gradients require a presentation in color,

but can represent a report in a traditional

traffic light color combination of red-yellow-

Data Visualizations and
Conditional Formatting

15

Chapter 15 Data Visualizations and Conditional Formatting368

green. You can control the points along the continuum where each color begins, and

you can control the two or three colors.

 ■ Icon sets—Excel assigns an icon to each number. Icon sets can contain three icons

such as the red, yellow, green traffic lights; four icons; or five icons such as the cell

phone power bars. Excel 2010 adds the 3-stars icon set and the 4-boxes icon set. With

icon sets, you can control the numeric limits for each icon, reverse the order of the

icons, or choose to show only the icons.

 ■ Above/below average—Found under the top/bottom rules fly-out menu, these rules

make it easy to highlight all of the cells that are above average. You can choose the for-

matting to apply to the cells. Note in Column G of Figure 15.1 only 30 percent of the

cells are above average. Contrast with the top 50 percent in Column I.

 ■ Top/bottom rules—Excel highlights the top or bottom n percent of cells or highlights

the top or bottom n cells in a range.

 ■ Duplicate values—Excel highlights any values that are repeated within a dataset.

Because the Delete Duplicates command on the Data tab of the Ribbon is so destruc-

tive, you might prefer to highlight the duplicates and then intelligently decide which

records to delete.

 ■ Highlight cells—The legacy conditional formatting rules such as greater than, less

than, between, and text that contains are still available in Excel 2010. The powerful
Formula conditions are also available, although you might have to use these less fre-

quently with the addition of the average and top/bottom rules.

Figure 15.1
Visualizations such as
data bars, color scales,
icon sets, and top/bottom
rules are controlled in
the Excel user interface
from the Conditional
Formatting drop-down
on the Home tab of the
Ribbon.

VBA Methods and Properties for Data Visualizations
All the data visualization settings are managed in VBA with the FormatConditions collec-

tion. Conditional formatting has been in Excel since Excel 97. In Excel 2010, Microsoft

expanded the FormatConditions object to handle the new visualizations. Whereas legacy

versions of Excel would use the FormatConditions.Add method, Excel 2010 offers addi-

tional methods such as AddDataBar, AddIconSetCondition, AddColorScale, AddTop10,

AddAboveAverage, and AddUniqueValues.

369Adding Data Bars to a Range

It is possible to apply several different conditional formatting conditions to the same range.

For example, you can apply a two-color color scale, an icon set, and a data bar to the same

range. Excel includes a Priority property to specify which conditions should be calculated

first. Methods such as SetFirstPriority and SetLastPriority ensure that a new format

condition is executed before or after all others.

The StopIfTrue property works in conjunction with the Priority property. In the “Using

Visualization Tricks” section, later in this chapter, you see how to use the StopIfTrue prop-

erty on a dummy condition to make other formatting apply only to certain subsets of a

range.

Beginning with Excel 2007, the Type property was expanded dramatically. This property

was formerly a toggle between CellValue and Expression, but 13 new types were added

in Excel 2007. Table 15.1 shows the valid values for the Type property. Items 3 through 17

were included in Excel 2007.

Table 15.1 Valid Types for a Format Condition

Value Description VBA Constant

1 Cell value xlCellValue

2 Expression xlExpression

3 Color scale xlColorScale

4 Data bar xlDatabar

5 Top 10 values xlTop10

6 Icon set XlIconSet

8 Unique values xlUniqueValues

9 Text string xlTextString

10 Blanks condition xlBlanksCondition

11 Time period xlTimePeriod

12 Above average condition xlAboveAverageCondition

13 No blanks condition xlNoBlanksCondition

16 Errors condition xlErrorsCondition

17 No errors condition xlNoErrorsCondition

Adding Data Bars to a Range
The Data Bar command adds an in-cell bar chart to each cell in a range. Many charting

experts complained to Microsoft about problems in the Excel 2007 data bars. For this rea-

son, Microsoft changed the data bars in Excel 2010 to address these problems.

Chapter 15 Data Visualizations and Conditional Formatting370

In Figure 15.2, Cell C37 is new in Excel 2010. Notice that this cell, which has a value of

0, has no data bar at all. In Excel 2007, the smallest value receives a 4-pixel data bar, even

if that smallest value is 0. In addition, in Excel 2010 the largest bar in the dataset typically

takes up the entire width of the cell.

In Excel 2007, the data bars would end in a gradient that made it difficult to tell where the

bar ended. Excel 2010 offers a border around the bar. You can choose to change the color

of the border or even to remove the border as shown in Column K of the figure.

Excel 2010 also offers support for negative data bars, as shown in Column G and the data

bars that run right to left as shown in Cells C43:C45 of Figure 15.2. These allow compara-

tive histograms.

Although all of these are fine improvements, they add complexity to the VBA that is required to create

data bars. In addition, you run the risk that your code will use new properties that will be incompatible

with Excel 2007.

T
IP

Figure 15.2
Excel 2010 offers many
variations on data bars.

To add a data bar, you apply the .FormatConditions.AddDataBar method to a range con-

taining your numbers. This method requires no arguments, and it returns an object of the

DataBar type.

Once you add the data bar, you will most likely need to change some of its properties. One

method of referring to the data bar is to assume that the recently added data bar is the last

item in the collection of format conditions. This code would add a data bar, identify the

data bar by counting the conditions, and then change the color:

Range(“A2:A11”).FormatConditions.AddDatabar
ThisCond = Range(“A2:A11”).FormatConditions.Count
With Range(“A2:A11”).FormatConditions(ThisCond).BarColor

371Adding Data Bars to a Range

 .Color = RGB(255, 0, 0) ‘ Red
 .TintAndShade = -0.5 ‘ Darker than normal
End With

A safer way to go is to define an object variable of type DataBar. You can then assign the

newly created data bar to the variable:

Dim DB As Databar
‘ Add the data bars
Set DB = Range(“A2:A11”).FormatConditions.AddDatabar()
‘ Use a red that is 25% darker
With DB.BarColor
 .Color = RGB(255, 0, 0)
 .TintAndShade = -0.25
End With

When specifying colors for the data bar or the border, you should use the RGB func-

tion to assign a color. You can modify the color by making it darker or lighter using the

TintAndShade property. Valid values are from -1 to 1. A value of 0 means no modification.

Positive values make the color lighter. Negative values make the color darker.

By default, Excel assigns the shortest data bar to the minimum value and the longest data

bar to the maximum value. If you want to override the defaults, use the Modify method for

either the MinPoint or MaxPoint properties. Specify a type from those shown in Table 15.2.

Types 0, 3, 4, and 5 require a value. Table 15.2 shows valid types.

Table 15.2 MinPoint and MaxPoint Types

Value Description VBA Constant

0 Number is used. xlConditionNumber

1 Lowest value from the list of values. xlConditionValueLowestValue

2 Highest value from the list of values. xlConditionValueHighestValue

3 Percentage is used. xlConditionValuePercent

4 Formula is used. xlConditionValueFormula

5 Percentile is used. xlConditionValuePercentile

–1 No conditional value. xlConditionValueNone

Use the following code to have the smallest bar assigned to values of 0 and below:

DB.MinPoint.Modify _
 Newtype:=xlConditionValueNumber, NewValue:=0

To have the top 20 percent of the bars have the largest bar, use this code:

DB.MaxPoint.Modify _
 Newtype:=xlConditionValuePercent, NewValue:=80

Chapter 15 Data Visualizations and Conditional Formatting372

An interesting alternative is to show only the data bars and not the value. To do this, use

this code:

DB.ShowValue = False

To show negative data bars in Excel 2010, use this line:

DB.AxisPosition = xlDataBarAxisAutomatic

Once you allow negative data bars, then you have the ability to specify an axis color, nega-

tive bar color, and a negative bar border color. Samples of how to change the various colors

are shown in the following code that creates the data bars shown in Column C of Figure

15.3.

Sub DataBar2()
‘ Add a Data bar
‘ Include negative data bars
‘ Control the min and max point
‘
 Dim DB As Databar
 With Range(“C2:C11”)
 .FormatConditions.Delete
 ‘ Add the data bars
 Set DB = .FormatConditions.AddDatabar()
 End With

 ‘ Set the lower limit
 DB.MinPoint.Modify newtype:=xlConditionFormula, NewValue:=”-600”
 DB.MaxPoint.Modify newtype:=xlConditionValueFormula, NewValue:=”600”

 ‘ Change the data bar to Green
 With DB.BarColor
 .Color = RGB(0, 255, 0)
 .TintAndShade = -0.15
 End With

 ‘ All of this is new in Excel 2010
 With DB
 ‘ Use a gradiant
 .BarFillType = xlDataBarFillGradient
 ‘ Left to Right for direction of bars
 .Direction = xlLTR
 ‘ Assign a different color to negative bars
 .NegativeBarFormat.ColorType = xlDataBarColor
 ‘ Use a border around the bars
 .BarBorder.Type = xlDataBarBorderSolid
 ‘ Assign a different border color to negative
 .NegativeBarFormat.BorderColorType = xlDataBarSameAsPositive
 ‘ All borders are solid black
 With .BarBorder.Color
 .Color = RGB(0, 0, 0)
 End With
 ‘ Axis where it naturally would fall, in black
 .AxisPosition = xlDataBarAxisAutomatic
 With .AxisColor
 .Color = 0
 .TintAndShade = 0

373Adding Data Bars to a Range

 End With
 ‘ Negative bars in red
 With .NegativeBarFormat.Color
 .Color = 255
 .TintAndShade = 0
 End With
 ‘ Negative borders in red
 End With

End Sub

In Excel 2010, you have a choice of showing a gradient or a solid bar. To show a solid bar,

use the following:

DB.BarFillType = xlDataBarFillSolid

The following code sample produces the solid bars shown in Column E of Figure 15.3:

Sub DataBar3()
‘ Add a Data bar
‘ Show solid bars
‘ Allow negative bars
‘ hide the numbers, show only the data bars
‘
 Dim DB As Databar
 With Range(“E2:E11”)
 .FormatConditions.Delete
 ‘ Add the data bars
 Set DB = .FormatConditions.AddDatabar()
 End With

 With DB.BarColor
 .Color = RGB(0, 0, 255)
 .TintAndShade = 0.1
 End With
 ‘ Hide the numbers
 DB.ShowValue = False

 ‘ New in Excel 2010
 DB.BarFillType = xlDataBarFillSolid
 DB.NegativeBarFormat.ColorType = xlDataBarColor
 With DB.NegativeBarFormat.Color
 .Color = 255
 .TintAndShade = 0
 End With
 ‘ Allow negatives
 DB.AxisPosition = xlDataBarAxisAutomatic
 ‘ Negative border color is different
 DB.NegativeBarFormat.BorderColorType = xlDataBarColor
 With DB.NegativeBarFormat.BorderColor
 .Color = RGB(127, 127, 0)
 .TintAndShade = 0
 End With

End Sub

Chapter 15 Data Visualizations and Conditional Formatting374

To allow the bars to go right to left, use this code:

DB.Direction = xlRTL ‘ Right to Left

Figure 15.3
Data bars created by the
macros in this section.

Adding Color Scales to a Range
Color scales can be added in either two-color or three-color scale varieties. Figure 15.4

shows the available settings in the Excel user interface for a color scale using three colors.

Figure 15.4
Color scales enable you
to show hot spots in your
dataset.

Like the data bar, a color scale is applied to a range object using the AddColorScale

method. You should specify a ColorScaleType of either 2 or 3 as the only argument of the

AddColorScale method.

Next, you can indicate a color and tint for both or all three of the color scale criteria. You

can also specify if the shade is applied to the lowest value, highest value, a particular value, a

percentage, or at a percentile using the values shown previously in Table 15.2.

375Adding Icon Sets to a Range

The following code generates a three-color color scale in Range A1:A10:

Sub Add3ColorScale()
 Dim CS As ColorScale

 With Range(“A1:A10”)
 .FormatConditions.Delete
 ‘ Add the Color Scale as a 3-color scale
 Set CS = .FormatConditions.AddColorScale(ColorScaleType:=3)
 End With

 ‘ Format the first color as light red
 CS.ColorScaleCriteria(1).Type = xlConditionValuePercent
 CS.ColorScaleCriteria(1).Value = 30
 CS.ColorScaleCriteria(1).FormatColor.Color = RGB(255, 0, 0)
 CS.ColorScaleCriteria(1).FormatColor.TintAndShade = 0.25

 ‘ Format the second color as green at 50%
 CS.ColorScaleCriteria(2).Type = xlConditionValuePercent
 CS.ColorScaleCriteria(2).Value = 50
 CS.ColorScaleCriteria(2).FormatColor.Color = RGB(0, 255, 0)
 CS.ColorScaleCriteria(2).FormatColor.TintAndShade = 0

 ‘ Format the third color as dark blue
 CS.ColorScaleCriteria(3).Type = xlConditionValuePercent
 CS.ColorScaleCriteria(3).Value = 80
 CS.ColorScaleCriteria(3).FormatColor.Color = RGB(0, 0, 255)
 CS.ColorScaleCriteria(3).FormatColor.TintAndShade = -0.25
End Sub

Adding Icon Sets to a Range
Icon sets in Excel come with three, four, or five different icons in the set. Figure 15.5 shows

the settings for an icon set with five different icons.

Figure 15.5
With additional icons, the
complexity of the code
increases.

Chapter 15 Data Visualizations and Conditional Formatting376

To add an icon set to a range, use the AddIconSet method. No arguments are required. You

can then adjust three properties that apply to the icon set. You then use several additional

lines of code to specify the icon set in use and the limits for each icon.

Specifying an Icon Set
After adding the icon set, you can control whether the icon order is reversed, whether Excel

shows only the icons, and then specify one of the 20 built-in icon sets:

Dim ICS As IconSetCondition
With Range(“A1:C10”)
 .FormatConditions.Delete
 Set ICS = .FormatConditions.AddIconSetCondition()
End With

‘ Global settings for the icon set
With ICS
 .ReverseOrder = False
 .ShowIconOnly = False
 .IconSet = ActiveWorkbook.IconSets(xl5CRV)
End With

It is somewhat curious that the IconSets collection is a property of the active workbook. This seems to

indicate that in future versions of Excel, new icon sets might be available.

N
O

T
E

Table 15.3 shows the complete list of icon sets.

Table 15.3 Available Icon Sets and Their VBA Constants

Icon Value Description Constant

1 3 arrows xl3Arrows

2 3 arrows gray xl3ArrowsGray

3 3 flags xl3Flags

4 3 traffic lights 1 xl3TrafficLights1

5 3 traffic lights 2 xl3TrafficLights2

6 3 signs xl3Signs

377Adding Icon Sets to a Range

Icon Value Description Constant

7 3 symbols xl3Symbols

8 3 symbols 2 xl3Symbols2

9 4 arrows xl4Arrows

10 4 arrows gray xl4ArrowsGray

11 4 red to black xl4RedToBlack

12 4 power bars xl4CRV

13 4 traffic lights xl4TrafficLights

14 5 arrows xl5Arrows

15 5 arrows gray xl5ArrowsGray

16 5 power bars xl5CRV

17 5 quarters xl5Quarters

18 3 stars xl3Stars

19 3 Triangles xl3Triangles

20 5 Boxes xl5Boxes

Specifying Ranges for Each Icon
After specifying the type of icon set, you can then specify ranges for each icon within the

set. By default, the first icon starts at the lowest value. You can adjust the settings for each

of the additional icons in the set:

‘ The first icon always starts at 0

‘ Settings for the second icon - start at 50%
With ICS.IconCriteria(2)
 .Type = xlConditionValuePercent
 .Value = 50

Chapter 15 Data Visualizations and Conditional Formatting378

 .Operator = xlGreaterEqual
End With
With ICS.IconCriteria(3)
 .Type = xlConditionValuePercent
 .Value = 60
 .Operator = xlGreaterEqual
End With
With ICS.IconCriteria(4)
 .Type = xlConditionValuePercent
 .Value = 80
 .Operator = xlGreaterEqual
End With
With ICS.IconCriteria(5)
 .Type = xlConditionValuePercent
 .Value = 90
 .Operator = xlGreaterEqual
End With

Valid values for the Operator property are XlGreater or xlGreaterEqual.

Using Visualization Tricks
If you use an icon set or a color scale, Excel applies a color to all cells in the dataset. Two

tricks in this section enable you to apply an icon set to only a subset of the cells or to apply

two different color data bars to the same range. The first trick is available in the user inter-

face, but the second trick is only available in VBA.

Creating an Icon Set for a Subset of a Range
Sometimes, you might want to apply only a red X to the bad cells in a range. This is tricky

to do in the user interface.

In the user interface, follow these steps to apply a red X to values greater than 80:

 1. Add a three-symbols icon set to the range.

 2. Specify that the symbols should be reversed.

 3. Indicate that the third icon appears for values greater than 80. You now have a mix of

all three icons, as shown in Figure 15.6.

 4. Add a new conditional format to highlight cells less than or equal to 80. Because you

don’t want any icons for these values, do not specify any special formatting for the cells

that match this rule.

With VBA, it is easy to create overlapping ranges such as icon 1 from 0 to 50 and icon 2 from 30 to 90.

Even though the Edit Formatting Rule dialog box will prevent overlapping ranges, VBA allows them.

However, keep in mind that your icon set will display unpredictably if you create invalid ranges.

C A U T I O N

379Using Visualization Tricks

 5. In the Conditional Formatting Rule Manager, indicate that Excel should stop evaluat-

ing conditions if the new condition is true. This prevents Excel from getting to the

icon set rule for any cell with a value of 80 or less. The result is that only cells greater

than 80 appear with a red X, as shown in Figure 15.7.

Figure 15.6
First, add a three-icon
set, paying particular
attention to the value for
the red X.

Figure 15.7
When you tell Excel to
stop evaluating rules after
the <=80 rule is true,
Excel never has a chance
to add the check mark or
exclamation point to the
other cells.

The code to create this effect in VBA is straightforward. A great deal of the code is spent

making sure that the icon set has the red X symbols on the cells greater than 80.

You will use the FormatConditions.Add method to add the second condition. However,

you need to make sure this condition is executed first. For this reason, you need to use the

SetFirstPriority method to move the new condition to the top of the list. The final step is

to turn on the StopIfTrue property.

Chapter 15 Data Visualizations and Conditional Formatting380

The code to highlight values greater than 80 with a red X is shown here:

Sub TrickyFormatting()
 ‘ mark the bad cells
 Dim ICS As IconSetCondition
 Dim FC As FormatCondition
 With Range(“A1:D9”)
 .FormatConditions.Delete
 Set ICS = .FormatConditions.AddIconSetCondition()
 End With
 With ICS
 .ReverseOrder = True
 .ShowIconOnly = False
 .IconSet = ActiveWorkbook.IconSets(xl3Symbols2)
 End With
 ‘ The threshhold for this icon doesn’t really matter,
 ‘ but you have to make sure that it does not overlap the 3rd icon
 With ICS.IconCriteria(2)
 .Type = xlConditionValue
 .Value = 66
 .Operator = xlGreater
 End With
 ‘ Make sure the red X appears for cells above 80
 With ICS.IconCriteria(3)
 .Type = xlConditionValue
 .Value = 80
 .Operator = xlGreater
 End With

 ‘ Next, add a condition to catch items <=80
 Set FC = Range(“A1:D9”).FormatConditions.Add(Type:=xlCellValue, _
 Operator:=xlLessEqual, Formula1:=”=80”)
 ‘ Move this new condition from position 2 to position 1
 FC.SetFirstPriority
 ‘ Add Stop if True.
 FC.StopIfTrue = True
End Sub

Using Two Colors of Data Bars in a Range
This trick is particularly cool because it can only be achieved with VBA. Say that values

above 90 are acceptable and below 90 indicate trouble. You would like acceptable values to

have a green bar and others to have a red bar.

Using VBA, you first add the green data bars. Then, without deleting the format condition,

you add red data bars.

In VBA, every format condition has a Formula property that defines whether the condition

is displayed for a given cell. Therefore, the trick is to write a formula that defines when the

green bars are displayed. When the formula is not True, the red bars are allowed to show

through.

In Figure 15.8, the effect is being applied to Range A1:D10. You need to write the formula

in A1 style, as if it applies to the top-left corner of the selection. The formula needs to eval-

381Using Visualization Tricks

uate to True or False. Excel automatically copies the formula to all the cells in the range.

The formula for this condition is =IF(A1>90,True,False).

Figure 15.8
The dark bars are red,
and the lighter bars are
green. VBA was used to
create two overlapping
data bars, and then the
Formula property
hid the top bars for cells
below 90.

The following code creates the two-color data bars:

Sub AddTwoDataBars()
 ‘ passing values in green, failing in red
 Dim DB As Databar
 Dim DB2 As Databar
 With Range(“A1:D10”)
 .FormatConditions.Delete
 ‘ Add a Light Green Data Bar
 Set DB = .FormatConditions.AddDatabar()

 DB.BarColor.Color = RGB(0, 255, 0)
 DB.BarColor.TintAndShade = 0.25
 ‘ Add a Red Data Bar
 Set DB2 = .FormatConditions.AddDatabar()
 DB2.BarColor.Color = RGB(255, 0, 0)
 ‘ Make the green bars only
 .Select ‘ Required to make the next line work
 .FormatConditions(1).Formula = “=IF(A1>90,True,False)”
 DB.Formula = “=IF(A1>90,True,False)”
 DB.MinPoint.Modify newtype:=xlConditionFormula, NewValue:=”60”
 DB.MaxPoint.Modify newtype:=xlConditionValueFormula, NewValue:=”100”
 DB2.MinPoint.Modify newtype:=xlConditionFormula, NewValue:=”60”
 DB2.MaxPoint.Modify newtype:=xlConditionValueFormula, NewValue:=”100”
 End With
End Sub

The Formula property works for all the conditional formats, which means you could poten-

tially create some obnoxious combinations of data visualizations. In Figure 15.9, five dif-

ferent icon sets are combined in a single range. No one will be able to figure out whether

a red flag is worse than a gray down arrow. Even so, this ability opens interesting combina-

tions for those with a little creativity.

The formula is evaluated relative to the current cell pointer location. Even though it is not usually nec-

essary to select cells before adding a FormatCondition, in this case, selecting the range ensures

that the formula will work.

T
IP

Chapter 15 Data Visualizations and Conditional Formatting382

Sub AddCrazyIcons()
 With Range(“A1:C10”)
 .Select ‘ The .Formula lines below require .Select here
 .FormatConditions.Delete

 ‘ First icon set
 .FormatConditions.AddIconSetCondition
 .FormatConditions(1).IconSet = ActiveWorkbook.IconSets(xl3Flags)
 .FormatConditions(1).Formula = “=IF(A1<5,TRUE,FALSE)”

 ‘ Next icon set
 .FormatConditions.AddIconSetCondition
 .FormatConditions(2).IconSet = ActiveWorkbook.IconSets(xl3ArrowsGray)
 .FormatConditions(2).Formula = “=IF(A1<12,TRUE,FALSE)”

 ‘ Next icon set
 .FormatConditions.AddIconSetCondition
 .FormatConditions(3).IconSet = ActiveWorkbook.IconSets(xl3Symbols2)
 .FormatConditions(3).Formula = “=IF(A1<22,TRUE,FALSE)”

 ‘ Next icon set
 .FormatConditions.AddIconSetCondition
 .FormatConditions(4).IconSet = ActiveWorkbook.IconSets(xl4CRV)
 .FormatConditions(4).Formula = “=IF(A1<27,TRUE,FALSE)”

 ‘ Next icon set
 .FormatConditions.AddIconSetCondition
 .FormatConditions(5).IconSet = ActiveWorkbook.IconSets(xl5CRV)
 End With
End Sub

Using Other Conditional Formatting Methods
Although the icon sets, data bars, and color scales get most of the attention, there are still

plenty of other uses for conditional formatting.

The remaining examples in this chapter show some of the prior conditional formatting

rules and some of the new methods available.

Figure 15.9
VBA created this mixture
of five different icon sets
in a single range. The
Formula property in
VBA is the key to combin-
ing icon sets.

383Using Other Conditional Formatting Methods

Formatting Cells That Are Above or Below Average
Use the AddAboveAverage method to format cells that are above or below average. After

adding the conditional format, specify whether the AboveBelow property is xlAboveAverage

or xlBelowAverage.

The following two macros highlight cells above and below average:

Sub FormatAboveAverage()
 With Selection
 .FormatConditions.Delete
 .FormatConditions.AddAboveAverage
 .FormatConditions(1).AboveBelow = xlAboveAverage
 .FormatConditions(1).Interior.Color = RGB(255, 0, 0)
 End With
End Sub

Sub FormatBelowAverage()
 With Selection
 .FormatConditions.Delete
 .FormatConditions.AddAboveAverage
 .FormatConditions(1).AboveBelow = xlBelowAverage
 .FormatConditions(1).Interior.Color = RGB(255, 0, 0)
 End With
End Sub

Formatting Cells in the Top 10 or Bottom 5
Four of the choices on the Top/Bottom Rules fly-out menu are controlled with the

AddTop10 method. After you add the format condition, you need to set three properties that

control how the condition is calculated:

 ■ TopBottom—Set this to either xlTop10Top or xlTop10Bottom.

 ■ Value—Set this to 5 for the top 5, 6 for the top 6, and so on.

 ■ Percent—Set this to False if you want the top 10 item. Set this to True if you want the

top 10 percent of the items.

The following code highlights top or bottom cells:

Sub FormatTop10Items()
 With Selection
 .FormatConditions.Delete
 .FormatConditions.AddTop10
 .FormatConditions(1).TopBottom = xlTop10Top
 .FormatConditions(1).Value = 10
 .FormatConditions(1).Percent = False
 .FormatConditions(1).Interior.Color = RGB(255, 0, 0)
 End With
End Sub

Sub FormatBottom5Items()
 With Selection
 .FormatConditions.Delete
 .FormatConditions.AddTop10

Chapter 15 Data Visualizations and Conditional Formatting384

 .FormatConditions(1).TopBottom = xlTop10Bottom
 .FormatConditions(1).Value = 5
 .FormatConditions(1).Percent = False
 .FormatConditions(1).Interior.Color = RGB(255, 0, 0)
 End With
End Sub

Sub FormatTop12Percent()
 With Selection
 .FormatConditions.Delete
 .FormatConditions.AddTop10
 .FormatConditions(1).TopBottom = xlTop10Top
 .FormatConditions(1).Value = 12
 .FormatConditions(1).Percent = True
 .FormatConditions(1).Interior.Color = RGB(255, 0, 0)
 End With
End Sub

Formatting Unique or Duplicate Cells
The Remove Duplicates command on the Data tab of the Ribbon is a destructive com-

mand. You might want to mark the duplicates without removing them. If so, the

AddUniqueValues method marks the duplicate or unique cells.

After calling the method, set the DupeUnique property to either xlUnique or xlDuplicate.

As I have ranted about in Excel 2010 In Depth (Que, ISBN 9780789743084), I do not

really like either of these options. Choosing duplicate values marks both cells that contain

the duplicate, as shown in Column A of Figure 15.10. For example, both A2 and A8 are

marked, when A8 is really the only duplicate value.

Choosing unique values marks only the cells that do not have a duplicate, as shown in

Column B of Figure 15.10. This leaves several cells unmarked. For example, none of the

cells containing 17 is marked.

Figure 15.10
The
AddUniqueValues
method can mark cells
such as those in Columns
A and C. Unfortunately,
it cannot mark the
truly useful pattern in
Column E.

385Using Other Conditional Formatting Methods

As any data analyst knows, the truly useful option would have been to mark the first unique

value. In this wishful state, Excel would mark one instance of each unique value. In this

case, the 17 in E2 would be marked, but any subsequent cells that contain 17 such as E8,

would remain unmarked.

The code to mark duplicates or unique values is shown here:

Sub FormatDuplicate()
 With Selection
 .FormatConditions.Delete
 .FormatConditions.AddUniqueValues
 .FormatConditions(1).DupeUnique = xlDuplicate
 .FormatConditions(1).Interior.Color = RGB(255, 0, 0)
 End With
End Sub

Sub FormatUnique()
 With Selection
 .FormatConditions.Delete
 .FormatConditions.AddUniqueValues
 .FormatConditions(1).DupeUnique = xlUnique
 .FormatConditions(1).Interior.Color = RGB(255, 0, 0)
 End With
End Sub

Sub HighlightFirstUnique()
 With Range(“E2:E16”)
 .Select
 .FormatConditions.Delete
 .FormatConditions.Add Type:=xlExpression, _
 Formula1:=”=COUNTIF(E$2:E2,E2)=1”
 .FormatConditions(1).Interior.Color = RGB(255, 0, 0)
 End With
End Sub

To see a demo of marking duplicates, search for Excel VBA 15 at YouTube.

Formatting Cells Based on Their Value
The value conditional formats have been around for several versions of Excel. Use the Add

method with the following arguments:

 ■ Type—In this section, the type will be xlCellValue.

 ■ Operator—Can be xlBetween, xlEqual, xlGreater, xlGreaterEqual, xlLess, xlLessE-

qual, xlNotBetween, xlNotEqual.

 ■ Formula1—Formula1 is used with each of the operators specified to provide a numeric

value.

 ■ Formula2—This is used for xlBetween and xlNotBetween.

Chapter 15 Data Visualizations and Conditional Formatting386

The following code sample highlights cells based on their values:

Sub FormatBetween10And20()
 With Selection
 .FormatConditions.Delete
 .FormatConditions.Add Type:=xlCellValue, Operator:=xlBetween, _
 Formula1:=”=10”, Formula2:=”=20”
 .FormatConditions(1).Interior.Color = RGB(255, 0, 0)
 End With
End Sub

Sub FormatLessThan15()
 With Selection
 .FormatConditions.Delete
 .FormatConditions.Add Type:=xlCellValue, Operator:=xlLess, _
 Formula1:=”=15”
 .FormatConditions(1).Interior.Color = RGB(255, 0, 0)
 End With
End Sub

Formatting Cells That Contain Text
When you are trying to highlight cells that contain a certain bit of text, you will use the Add

method, the xlTextString type, and an operator of xlBeginsWith, xlContains, xlDoesNot-

Contain, or xlEndsWith.

The following code highlights all cells that contain a capital letter A:

Sub FormatContainsA()
 With Selection
 .FormatConditions.Delete
 .FormatConditions.Add Type:=xlTextString, String:=”A”, _
 TextOperator:=xlContains
 ‘ other choices: xlBeginsWith, xlDoesNotContain, xlEndsWith
 .FormatConditions(1).Interior.Color = RGB(255, 0, 0)
 End With
End Sub

Formatting Cells That Contain Dates
The date conditional formats were new in Excel 2007. The list of available date operators is

a subset of the date operators available in the new pivot table filters. Use the Add method, the

xlTimePeriod type, and one of these DateOperator values: xlYesterday, xlToday, xlTomorrow,

xlLastWeek, xlLast7Days, xlThisWeek, xlNextWeek, xlLastMonth, xlThisMonth, xlNextMonth.

The following code highlights all dates in the past week:

Sub FormatDatesLastWeek()
 With Selection
 .FormatConditions.Delete
 ‘ DateOperator choices include xlYesterday, xlToday, xlTomorrow,
 ‘ xlLastWeek, xlThisWeek, xlNextWeek, xlLast7Days
 ‘ xlLastMonth, xlThisMonth, xlNextMonth,
 .FormatConditions.Add Type:=xlTimePeriod, DateOperator:=xlLastWeek
 .FormatConditions(1).Interior.Color = RGB(255, 0, 0)
 End With
End Sub

387Using Other Conditional Formatting Methods

Formatting Cells That Contain Blanks or Errors
Buried deep within the Excel interface are options to format cells that contain blanks, con-

tain errors, do not contain blanks, or do not contain errors. If you use the macro recorder,

Excel uses the complicated xlExpression version of conditional formatting. For example, to

look for a blank, Excel will test to see whether the =LEN(TRIM(A1))=0. Instead, you can use

any of these four self-explanatory types. You are not required to use any other arguments

with these new types:

.FormatConditions.Add Type:=xlBlanksCondition

.FormatConditions.Add Type:=xlErrorsCondition

.FormatConditions.Add Type:=xlNoBlanksCondition

.FormatConditions.Add Type:=xlNoErrorsCondition

Using a Formula to Determine Which Cells to Format
The most powerful conditional format is still the xlExpression type. In this type, you pro-

vide a formula for the active cell that evaluates to True or False. Make sure to write the

formula with relative or absolute references so that the formula will be correct when Excel

copies the formula to the remaining cells in the selection.

An infinite number of conditions can be identified with a formula. Two popular conditions

are shown here.

Highlight the First Unique Occurrence of Each Value in a Range

In Column A of Figure 15.11, you would like to highlight the first occurrence of each value

in the column. The highlighted cells will then contain a complete list of the unique num-

bers found in the column.

The macro should select Cells A1:A15. The formula should be written to return a True or

False value for Cell A1. Because Excel logically copies this formula to the entire range, a

careful combination of relative and absolute references should be used.

The formula can use the COUNTIF function. Check to see how many times the range from

A$1 to A1 contains the value A1. If the result is equal to 1, the condition is True, and the

cell is highlighted. The first formula is =COUNTIF(A$1:A1,A1)=1. As the formula is copied

down to, say A12, the formula changes to =COUNTIF(A$1:A12,A12)=1.

The following macro creates the formatting shown in Column A of Figure 15.11:

Sub HighlightFirstUnique()
 With Range(“A1:A15”)
 .Select
 .FormatConditions.Delete
 .FormatConditions.Add Type:=xlExpression, _
 Formula1:=”=COUNTIF(A$1:A1,A1)=1”
 .FormatConditions(1).Interior.Color = RGB(255, 0, 0)
 End With
End Sub

Chapter 15 Data Visualizations and Conditional Formatting388

Highlight the Entire Row for the Largest Sales Value

Another example of a formula-based condition is when you want to highlight the entire

row of a dataset in response to a value in one column. Consider the dataset in Cells D2:F15

of Figure 15.11. If you want to highlight the entire row that contains the largest sale, you

select Cells D2:F15 and write a formula that works for Cell D2: =$F2=MAX($F$2:$F$15).

The code required to format the row with the largest sales value is as follows:

Sub HighlightWholeRow()
 With Range(“D2:F15”)
 .Select
 .FormatConditions.Delete
 .FormatConditions.Add Type:=xlExpression, _
 Formula1:=”=$F2=MAX($F$2:$F$15)”
 .FormatConditions(1).Interior.Color = RGB(255, 0, 0)
 End With
End Sub

Using the New NumberFormat Property
In legacy versions of Excel, a cell that matched a conditional format could have a particu-

lar font, font color, border, or fill pattern. Starting in Excel 2007, you can also specify a

number format. This can prove useful for selectively changing the number format used to

display the values.

For example, you might want to display numbers above 999 in thousands, numbers above

999,999 in hundred thousands, and numbers above 9 million in millions.

If you turn on the macro recorder and attempt to record setting the conditional format to

a custom number format, the Excel 2007 VBA macro recorder actually records the action

of executing an XL4 macro! Skip the recorded code and use the NumberFormat property as

shown here:

Sub NumberFormat()
 With Range(“E1:G26”)
 .FormatConditions.Delete

Figure 15.11
A formula-based condi-
tion can mark the first
unique occurrence of
each value, as shown in
Column A, or the entire
row with the largest sales,
as shown in D:F.

389Next Steps

 .FormatConditions.Add Type:=xlCellValue, Operator:=xlGreater, _
 Formula1:=”=9999999”
 .FormatConditions(1).NumberFormat = “$#,##0,””M”””
 .FormatConditions.Add Type:=xlCellValue, Operator:=xlGreater,
 Formula1:=”=999999”
 .FormatConditions(2).NumberFormat = “$#,##0.0,””M”””
 .FormatConditions.Add Type:=xlCellValue, Operator:=xlGreater,
 Formula1:=”=999”
 .FormatConditions(3).NumberFormat = “$#,##0,K”
 End With
End Sub

Figure 15.12 shows the original numbers in Columns A:C. The results of running the

macro are shown in Columns E:G. The dialog box shows the resulting conditional format

rules.

Figure 15.12
Since Excel 2007, condi-
tional formats can specify
a specific number format.

The Internet has become pervasive and has changed

our lives. From your desktop, millions of answers

are available at your fingertips. In addition, publish-

ing a report on the Web allows millions of others to

instantly access your information.

This chapter discusses automated ways to pull data

from the Web into spreadsheets, using web queries.

You will learn how to use VBA to call a website

repeatedly to gather information for many data

points. It also shows how to save data from your

spreadsheet directly to the Web.

Getting Data from the Web
There is an endless variety of data on the Internet.

You can gather stock quotes from Quotes.com. You

can download historical temperatures from weather

underground. You can get fantasy football stats

from NFL.com. Whatever your interest, there is

probably a website somewhere with that informa-

tion online.

Sometimes the websites make it difficult by put-

ting the information on many different pages. You

can use VBA to automate the process of visiting all

those pages and collecting the data.

Instead of manually downloading data from a web-

site every day and then importing it into Excel, you

can use the Web Query feature in Excel to allow it

to automatically retrieve the data from a web page.

Web queries can be set up to refresh the data from

the Web every day or even every minute. While

they were originally fairly hard to define, the Excel

user interface now includes a web browser that you

can use to build the web query.

Reading from and Writing
to the Web

16

Chapter 16 Reading from and Writing to the Web392

As Web 2.0 evolves, there are some sites that are not suitable for web queries. You want to

look for web pages where the URL tells you about the selections that you made while get-

ting to that page.

For example, I searched for NFL stats. In the process of getting to an interesting page, I

had asked for 2008 regular season data. I had asked for passing stats and then the complete

list. I ended up at a page with a very long URL, as follows:

http://www.nfl.com/stats/categorystats?tabSeq=0&statisticCategory=PASSING&co
nference=null&season=2008&seasonType=REG&d-447263-s=PASSING_YARDS&d-447263-
o=2&d-447263-n=1

This looks like an excellent candidate for web queries because all of my choices are embed-

ded in that URL. I can see 2008, REG, PASSING YARDS in the URL.

Go to the address bar, change 2008 to 2007, and press Enter. If the correct page comes up

with 2007 passing yards, you know that you have a winner.

Another example: Suppose you wanted currency exchange rates from XE.com. On the

XE.com page, you specify 100, CAD for Canadian dollars and USD for U.S. dollars. Click

Go. The URL of the returned page is http://www.xe.com/ucc/convert.cgi?Amount=100&F

rom=CAD&To=USD. You can see how you can alter this URL by changing USD to GBP

to get British pounds.

In contrast, take a look at http://www.Easy-XL.com. There are several videos that you can

watch there. As you navigate to each video, the URL stays exactly the same:

http://www.easy-xl.com/iaplayer.cgi?v=Query&x=play&p=ez%2Fvideos&i=ezVideos.
csv

There is nothing in that URL which tells you which video you chose. The site is using

some Web 2.0 magic via java to serve up the correct video. A site built like this is not ideal

for web queries.

Manually Creating a Web Query and Refreshing with VBA
The easiest way to get started with web queries is to create your first one manually while

the macro recorder is running.

Excel 2010 includes the PowerPivot add-in that allows you to mash-up disparate datasets.

One of the favorite demo applications is to mash up daily sales data from a store with daily

weather for that city. You probably already have daily sales data for your stores. The hard

part is finding daily weather data.

The Weather Underground website has a historical weather query. After browsing to find

the data for the Akron Canton airport (code = CAK) for June 16, 2006, you will have this

URL:

http://www.wunderground.com/history/airport/KCAK/2006/6/16/DailyHistory.html

You can see all the variables in the URL; the airport code of CAK and the date from which

you need the weather, albeit in a bizarre format of YYYY/M/D.

http://www.nfl.com/stats/categorystats?tabSeq=0&statisticCategory=PASSING&conference=null&season=2008&seasonType=REG&d-447263-s=PASSING_YARDS&d-447263-o=2&d-447263-n=1
http://www.nfl.com/stats/categorystats?tabSeq=0&statisticCategory=PASSING&conference=null&season=2008&seasonType=REG&d-447263-s=PASSING_YARDS&d-447263-o=2&d-447263-n=1
http://www.nfl.com/stats/categorystats?tabSeq=0&statisticCategory=PASSING&conference=null&season=2008&seasonType=REG&d-447263-s=PASSING_YARDS&d-447263-o=2&d-447263-n=1
http://www.xe.com/ucc/convert.cgi?Amount=100&From=CAD&To=USD
http://www.xe.com/ucc/convert.cgi?Amount=100&From=CAD&To=USD
http://www.Easy-XL.com
http://www.easy-xl.com/iaplayer.cgi?v=Query&x=play&p=ez%2Fvideos&i=ezVideos.csv
http://www.easy-xl.com/iaplayer.cgi?v=Query&x=play&p=ez%2Fvideos&i=ezVideos.csv
http://www.wunderground.com/history/airport/KCAK/2006/6/16/DailyHistory.html

393Getting Data from the Web

Open Excel. Go to a blank worksheet. Rather than leave the cellpointer in A1, move down

to about Cell A10 to leave room for some work variables later.

Turn on the macro recorder. Record a new macro called WeatherQuery. From the Data tab

of the Ribbon, select Get External Data, from Web. Excel shows the New Web Query dia-

log with your Internet Explorer home page displayed.

Using the browser, go to your desired website. Make the selections necessary to get the

data. In the case of Weather Underground, select history, the city, the date, and click Go. In

a moment, the desired web page will display in the dialog box.

Note that in addition to the web page there are a number of yellow squares with a black

arrow. These squares are in the upper-left corner of various tables on the web page. Click

the square that contains the data that you want to import to Excel. In this case, you want

the weather information. As shown in Figure 16.1, click the square by the weather. While

you are clicking, a blue border confirms the table that will be imported. After you click, the

yellow arrow changes to a green check mark.

Click the Import button on the New Web Query dialog. Click OK on the Import Data

dialog. In a few seconds, you will see the live data imported into a range on your spread-

sheet. Because you import the entire section of the web page, there will be the data that you

want as well as extraneous data. In Figure 16.2, you will see that I’ve manually highlighted

the statistics that I think would be relevant in northeastern Ohio. If you live in Maui or

Trinidad, you might not care about snowfall. Figure 16.2 shows the returned web query.

Figure 16.1
Use the New Web Query
dialog to browse to a web
page. Highlight the table
that you want to import
to Excel by clicking on a
yellow arrow adjacent to
the table.

Chapter 16 Reading from and Writing to the Web394

The recorded macro:

Sub WeatherQuery()
‘
‘ WeatherQuery Macro
‘
 CS = “ URL;http://www.wunderground.com/history/airport/KCAK/”
 CS = CS & “2006/6/16/DailyHistory.html”
 With ActiveSheet.QueryTables.Add(Connection:= _
 CS, Destination:=Range(“A10”))
 .Name = _
 “DailyHistory.html”
 .FieldNames = True
 .RowNumbers = False
 .FillAdjacentFormulas = False
 .PreserveFormatting = True
 .RefreshOnFileOpen = False
 .BackgroundQuery = True
 .RefreshStyle = xlInsertDeleteCells
 .SavePassword = False
 .SaveData = True
 .AdjustColumnWidth = True
 .RefreshPeriod = 0
 .WebSelectionType = xlSpecifiedTables
 .WebFormatting = xlWebFormattingNone
 .WebTables = “11”
 .WebPreFormattedTextToColumns = True
 .WebConsecutiveDelimitersAsOne = True
 .WebSingleBlockTextImport = False
 .WebDisableDateRecognition = False
 .WebDisableRedirections = False
 .Refresh BackgroundQuery:=False
 End With
End Sub

Figure 16.2
Data from the web page
is automatically copied
to your worksheet. You
can now use VBA to
automatically refresh this
data at your command or
periodically.

395Getting Data from the Web

The important parts of this macro are the connect string, the location of the data returned

from the web query, the web table, and the Refresh BackgroundQuery:=False.

The connect string is the URL that you found in the address bar of Internet Explorer (pre-

ceded by URL:).

The output location for the web query is specified in the destination property.

Setting Background Query to False means that the macro will not proceed until the data

comes back from the web page. This is the appropriate setting. You macro might go on

to pull certain pieces of data from the results. If you allowed the query to run in the back-

ground, the macro would be pulling from a blank web page.

In the recorded code, you will see WebTables as 11. This means that when you select the

check box for the weather table, it happened to be the 11th table on the web page. The best

way to figure out this table number is to record a macro and have the macro recorder tell

you the table number that corresponds to the check box that you selected.

In this example, if the word Actual does not appear in Cell B10, stop the macro and alert

someone:

If Not Range(“B10”) = “Actual” then
 MsgBox “It looks like the underlying website changed. Call Bill at “ _
 & “ext 1234. It should only take a few minutes to fix up the “ _
 & “macro and have you on your way.”
 Exit Sub
End Sub

Using VBA to Update an Existing Web Query
To update all web queries on the current sheet, use this code:

Sub RefreshAllWebQueries()
 Dim QT As QueryTable
 For Each QT In ActiveSheet.QueryTables
 Application.StatusBar = “Refreshing “ & QT.Connection
 QT.Refresh
 Next QT
 Application.StatusBar = False
End Sub

You can assign this macro to a hot key or to a macro button and refresh all queries on

demand.

If web query macros are going to break over time, it will be because of a website redesign. If the web

owner decides to ad a new advertising box at the top of the website, it might move the good data

from table #11 to table #12. If you are designing a web query that will be run once a day for the next

five years, you should add some code to make sure that you are actually getting the correct data.

C A U T I O N

Chapter 16 Reading from and Writing to the Web396

Building Many Web Queries with VBA
To gather weather data for 24 months, you have to repeat the web query process more than

700 times. This would be tedious to do manually.

Instead, you can use VBA to build and execute the web queries. It is fairly simple to build a

web query on-the-fly. The connect string to get weather for any airport for any day can be

broken down into four parts.

The first part can be hard-coded because it never changes:

“URL;http://www.wunderground.com/history/airport/K”

The next part is the 3-letter airport code. If you are retrieving data for many cities, this part

will change:

CAK

The third part is a slash, the date in YYYY/M/D format and a slash:

/2006/6/16/

The final part can be hard-coded:

DailyHistory.html”

Insert a new worksheet and build an output table. In Cell A2, enter the first date for which

you have sales history. Use the fill handle to drag the dates down to the current date.

The formula in B2 is =”/”&Text(A2,”YYYY/M/D”)&”/”.

Add friendly headings across Row 1 for the statistics that you will collect.

The data worksheet is shown in Figure 16.3.

Figure 16.3
Build a data worksheet
to hold the results of the
web query.

Finding Results from Retrieved Data

Next, you have a decision to make. It looks like the weather underground website is fairly

static. The snow statistic even shows up if I ask for JHM airport in Maui. If you are positive

that rainfall is always going to appear in Cell B28 of your results sheet, you could write the

macro to get data from there.

397Getting Data from the Web

However, to be safe, you can build some VLOOKUP formulas at the top of the worksheet

to look for certain row labels and to pull that data. In Figure 16.4, 7 VLOOKUP formulas in

A2:G2 grab the necessary statistics from the web query.

To build the macro, you will add some code before the recorded code:

Dim WSD as worksheet
Dim WSW as worksheet
Set WSD = Worksheets(“Data”)
Set WSW = Worksheets(“Web”)
FinalRow = WSD.Cells(Rows.Count, 1).End(xlUp).Row

Then add a loop to go through all of the dates in the data worksheet.

For I = 2 to FinalRow
 ThisDate = WSD.Cells(I, 2).value
 ‘ Build the ConnectString
 CS = “URL: URL;http://www.wunderground.com/history/airport/KCAK
 CS = CS & ThisDate & “DailyHistory.html”

If a web query is about to overwrite existing data on the worksheet, it will move that data to

the right. You want to clear the previous web query and all of the contents:

For Each qt In WSD.QueryTables
 qt.Delete
Next qt
WSD.Range(“A10:A100”).EntireRow.Clear

You can now go into the recorded code. Change the QueryTables.Add line to the following:

With WSD.QueryTables.Add(Connection:= CS, Destination:=WSW.Range(“A10”))

After the recorded code, add some lines to calculate the VLOOKUPs, copy the results, and fin-

ish the loop:

WSW.Calculate
WSD.Cells(I, 3).Resize(1, 7).Value = WSW.Range(“A2:G2”).Value
Next i

The variable web location of the web data happens more often than you might think. If you are pulling

name and address information, some addresses have three lines and some have four lines. Anything

that appears after that address might be off by a row. Some stock quote sites show a different version

of the data depending on whether the market is open or closed. If you kick off a series of web queries

at 3:45 p.m., the macro might work until 4 p.m. and then stop working. For these reasons, it is often

safer to take the extra steps of retrieving the correct data from the web query using VLOOKUP state-

ments.

N
O

T
E

Figure 16.4
VLOOKUPs at the top of
the web worksheet find
and pull the relevant data
from a web page.

Chapter 16 Reading from and Writing to the Web398

Step through the code as it goes through the first loop to make sure that everything is

working. You should notice that the actual .Refresh line takes about 5 to 10 seconds. To

gather 2 or 3 years’ worth of web pages, it will require more than an hour of processing

time. Run the macro, head to lunch, and then come back to a good dataset.

Putting It All Together

In the final macro here, I turned off screen updating and showed the row number that the

macro is processing in the status bar. I also deleted some unnecessary properties from the

recorded code:

Sub GetData()
‘
‘ GetData Macro
‘

‘
Dim WSD As Worksheet
Dim WSW As Worksheet
Dim qt As QueryTable
 Set WSD = Worksheets(“Data”)
 Set WSW = Worksheets(“Web”)
 FinalRow = WSD.Cells(Rows.Count, 1).End(xlUp).Row

For i = 2 To FinalRow
 Application.StatusBar = i
 Application.ScreenUpdating = False
 For Each qt In WSW.QueryTables
 qt.Delete
 Next qt
 WSW.Range(“A10:A100”).EntireRow.Clear
 CS = “URL;http://www.wunderground.com/history/airport/KCAK” _
 & WSD.Cells(i, 2).Value & “DailyHistory.html”

 With WSW.QueryTables.Add(Connection:=CS, Destination:=WSW.[A10])
 .Name = “DailyHistory”
 .FieldNames = True
 .BackgroundQuery = True
 .WebSelectionType = xlSpecifiedTables
 .WebFormatting = xlWebFormattingNone
 .WebTables = “10”
 .Refresh BackgroundQuery:=False
 End With

 WSW.Calculate

 ‘ Save the results from this query
 WSD.Cells(i, 3).Resize(1, 7).Value = WSW.Range(“A2:G2”).Value

Next i
End Sub

After an hour, you will have data retrieved from hundreds of web pages (see Figure 16.5).

399Using Application.OnTime to Periodically Analyze Data

Examples of Scraping Websites Using Web Queries

Over the years, I have used the web query trick many times. Examples include the

following:

 ■ Names and company address for all Fortune 1000 CFOs so that I could pitch my

Power Excel seminars to them.

 ■ The complete membership roster for a publishing association of which I am a member.

(I already had the printed roster, but with an electronic database, I could filter to find

publishers in certain cities).

 ■ The complete list of Chipotle restaurants (which later ended up in my GPS, but that is

a story for the (yet unwritten) Microsoft MapPoint book).

Using Application.OnTime to Periodically Analyze Data
VBA offers the OnTime method for running any VBA procedure at a specific time of day or

after a specific amount of time has passed.

You can write a macro that would capture data every hour throughout the day. This macro

would have times hard-coded. The following code will, theoretically, capture data from a

website every hour throughout the day:

Sub ScheduleTheDay()
 Application.OnTime EarliestTime:=TimeValue(“8:00 AM”), _
 Procedure:=CaptureData
 Application.OnTime EarliestTime:=TimeValue(“9:00 AM”), _
 Procedure:=CaptureData
 Application.OnTime EarliestTime:=TimeValue(“10:00 AM”), _
 Procedure:=CaptureData
 Application.OnTime EarliestTime:=TimeValue(“11:00 AM”), _
 Procedure:=CaptureData
 Application.OnTime EarliestTime:=TimeValue(“12:00 AM”), _
 Procedure:=CaptureData
 Application.OnTime EarliestTime:=TimeValue(“1:00 PM”), _
 Procedure:=CaptureData
 Application.OnTime EarliestTime:=TimeValue(“2:00 PM”), _
 Procedure:=CaptureData
 Application.OnTime EarliestTime:=TimeValue(“3:00 PM”), _
 Procedure:=CaptureData

Figure 16.5
The results of running
the web query hundreds
of times.

Chapter 16 Reading from and Writing to the Web400

 Application.OnTime EarliestTime:=TimeValue(“4:00 PM”), _
 Procedure:=CaptureData
 Application.OnTime EarliestTime:=TimeValue(“5:00 PM”), _
 Procedure:=CaptureData
End Sub

Sub CaptureData()
 Dim WSQ As Worksheet
 Dim NextRow As Long
 Set WSQ = Worksheets(“MyQuery”)
 ‘ Refresh the web query
 WSQ.Range(“A2”).QueryTable.Refresh BackgroundQuery:=False
 ‘ Make sure the data is updated
 Application.Wait (Now + TimeValue(“0:00:10”))
 ‘ Copy the web query results to a new row
 NextRow = WSQ.Cells(Rows.Count, 1).End(xlUp).Row + 1
 WSQ.Range(“A2:B2”).Copy WSQ.Cells(NextRow, 1)
End Sub

Scheduled Procedures Require Ready Mode
The OnTime method will run provided only that Excel is in Ready, Copy, Cut, or Find mode

at the prescribed time. If you start to edit a cell at 7:59:55 a.m. and keep that cell in Edit

mode, Excel cannot run the CaptureData macro at 8:00 a.m. as directed.

In the preceding code example, I specified only the start time for the procedure to run.

Excel waits anxiously until the spreadsheet is returned to Ready mode and then runs the

scheduled program as soon as it can.

The classic example is that you start to edit a cell at 7:59 a.m., and then your manager walks

in and asks you to attend a surprise staff meeting down the hall. If you leave your spread-

sheet in Edit mode and attend the staff meeting until 10:30 a.m., the program cannot run

the first three scheduled hours of updates. As soon as you return to your desk and press

Enter to exit Edit mode, the program runs all previously scheduled tasks. In the preceding

code, you will find that the first three scheduled updates of the program all happen between

10:30 and 10:31 a.m.

Specifying a Window of Time for an Update
One alternative is to provide Excel with a window of time within which to make the update.

The following code tells Excel to run the update at anytime between 8:00 a.m. and 8:05

a.m. If the Excel session remains in Edit mode for the entire five minutes, the scheduled

task is skipped:

Application.OnTime EarliestTime:=TimeValue(“8:00 AM”), Procedure:=CaptureData,
 LatestTime:=TimeValue(“8:05 AM”)

Canceling a Previously Scheduled Macro
It is fairly difficult to cancel a previously scheduled macro. You must know the exact time

that the macro is scheduled to run. To cancel a pending operation, call the OnTime method

401Using Application.OnTime to Periodically Analyze Data

again, using the Schedule:=False parameter to unschedule the event. The following code

cancels the 11:00 a.m. run of CaptureData:

Sub CancelEleven()
Application.OnTime EarliestTime:=TimeValue(“11:00 AM”), _
 Procedure:=CaptureData, Schedule:=False
End Sub

It is interesting to note that the OnTime schedules are remembered by a running instance of

Excel. If you keep Excel open but close the workbook with the scheduled procedure, it still

runs. Consider this hypothetical series of events:

1. Open Excel at 7:30 a.m.

2. Open Schedule.XLS and run a macro to schedule a procedure at 8:00 a.m.

3. Close Schedule.xls but keep Excel open.

4. Open a new workbook and begin entering data.

At 8:00 a.m., Excel reopens Schedule.xls and runs the scheduled macro. Excel doesn’t close

Schedule.xls. As you can imagine, this is fairly annoying and alarming if you are not expect-

ing it. If you are going to make extensive use of Application.Ontime, you might want to

have it running in one instance of Excel while you work in a second instance of Excel.

Closing Excel Cancels All Pending Scheduled Macros
If you close Excel with File, Exit, all future scheduled macros are automatically canceled.

When you have a macro that has scheduled a bunch of macros at indeterminate times, clos-

ing Excel is the only way to prevent the macros from running.

Scheduling a Macro to Run x Minutes in the Future
You can schedule a macro to run at a time at a certain point in the future. The macro uses

the TIME function to return the current time and adds 2 minutes and 30 seconds to the time.

The following macro runs something 2 minutes and 30 seconds from now:

Sub ScheduleAnything()
 ‘ This macro can be used to schedule anything
 WaitHours = 0
 WaitMin = 2
 WaitSec = 30
 NameOfScheduledProc = “CaptureData”
 ‘ --- End of Input Section -------

If you are using a macro to schedule a macro a certain amount of time in the future from the current

time, you could remember the time in an out-of-the way cell to be able to cancel the update. See an

example in the “Scheduling a Macro to Run x Minutes in the Future” section of this chapter.

N
O

T
E

Chapter 16 Reading from and Writing to the Web402

 ‘ Determine the next time this should run
 NextTime = Time + TimeSerial(WaitHours, WaitMin, WaitSec)

 ‘ Schedule ThisProcedure to run then
 Application.OnTime EarliestTime:=NextTime, Procedure:=NameOfScheduledProc

End Sub

Later, if you need to cancel this scheduled event, it would be nearly impossible. You won’t

know the exact time that the macro grabbed the TIME function. You might try to save this

value in an out-of-the-way cell:

Sub ScheduleWithCancelOption
 NameOfScheduledProc = “CaptureData”

 ‘ Determine the next time this should run
 NextTime = Time + TimeSerial(0,2,30)
 Range(“ZZ1”).Value = NextTime

 ‘ Schedule ThisProcedure to run then
 Application.OnTime EarliestTime:=NextTime, Procedure:=NameOfScheduledProc

End Sub

Sub CancelLater()
 NextTime = Range(“ZZ1”).value
 Application.OnTime EarliestTime:=NextTime, _
 Procedure:=CaptureData, Schedule:=False
End Sub

Scheduling a Verbal Reminder
The text to speech tools in Excel can be fun. The following macro sets up a schedule that

will remind you when it is time to go to the staff meeting:

Sub ScheduleSpeak()
 Application.OnTime EarliestTime:=TimeValue(“9:14 AM”), _
 Procedure:=”RemindMe”
End Sub

Sub RemindMe()
 Application.Speech.Speak Text:=”Bill. It is time for the staff meeting.”
End Sub

If you want to pull a prank on your manager, you can schedule Excel to automatically turn

on the Speak on Enter feature. Follow this scenario:

 1. Tell your manager that you are taking him out to lunch to celebrate April 1.

 2. At some point in the morning, while your manager is getting coffee, run the

ScheduleSpeech macro. Design the macro to run 15 minutes after your lunch starts.

 3. Take your manager to lunch.

 4. While the manager is away, the scheduled macro will run.

403Using Application.OnTime to Periodically Analyze Data

 5. When the manager returns and starts typing data in Excel, the computer will repeat

the cells as they are entered. This is slightly reminiscent of the computer on Star Trek
that repeated everything that Lieutenant Uhura would say.

After this starts happening, you can pretend to be innocent; after all, you have a firm alibi

for when the prank began to happen:

Sub ScheduleSpeech()
 Application.OnTime EarliestTime:=TimeValue(“12:15 PM”), _
 Procedure:=”SetUpSpeech”
End Sub

Sub SetupSpeech())
 Application.Speech.SpeakCellOnEnter = True
End Sub

Scheduling a Macro to Run Every 2 Minutes
My favorite method is to ask Excel to run a certain macro every 2 minutes. However, I real-

ize that if a macro gets delayed because I accidentally left the workbook in Edit mode while

going to the staff meeting, I don’t want dozens of updates to happen in a matter of seconds.

The easy solution is to have the ScheduleAnything procedure recursively schedule itself to

run again in 2 minutes. The following code schedules a run in 2 minutes and then performs

CaptureData:

Sub ScheduleAnything()
 ‘ This macro can be used to schedule anything
 ‘ Enter how often you want to run the macro in hours and minutes
 WaitHours = 0
 WaitMin = 2
 WaitSec = 0
 NameOfThisProcedure = “ScheduleAnything”
 NameOfScheduledProc = “CaptureData”
 ‘ --- End of Input Section -------

 ‘ Determine the next time this should run
 NextTime = Time + TimeSerial(WaitHours, WaitMin, WaitSec)

 ‘ Schedule ThisProcedure to run then
 Application.OnTime EarliestTime:=NextTime, Procedure:=NameOfThisProcedure

 ‘ Get the Data
 Application.Run NameOfScheduledProc

End Sub

To turn off Speak on Enter, you can either dig out the button from the QAT Customization panel

(look in the category called Commands Not on the Ribbon) or, if you can run some VBA, change the

SetupSpeech macro to change the True to False.

N
O

T
E

Chapter 16 Reading from and Writing to the Web404

This method has some advantages. I have not scheduled a million updates in the future.

I have only one future update scheduled at any given time. Therefore, if I decide that I

am tired of seeing the national debt every 15 seconds, I only need to comment out the

Application.OnTime line of code and wait 15 seconds for the last update to happen.

Publishing Data to a Web Page
This chapter has highlighted many ways to capture data from the Web. It is also useful for

publishing Excel data back to the Web.

In Chapter 14, “Excel Power,” the RunReportForEachCustomer macro was able to produce

reports for each customer in a company. Instead of printing and faxing the report, it would

be cool to save the Excel file as HTML and post the results on a company intranet so that

the customer service reps could instantly access the latest version of the report.

Consider a report like the one shown in Figure 16.6. With the Excel user interface, it is

easy to use save the report as a web page to create an HTML view of the data.

Figure 16.6
A macro from Chapter 14
was used to automatically
generate this Excel work-
book. Rather than e-mail
the report, we could save
it as a web page and
post it on the company
intranet.

In Excel 2010, use File, Save As. Select Web Page (*.htm, *html) in the Save as Type drop-

down (see Figure 16.7).

The Excel 2003 option to add interactivity to a web page has been deprecated and is no longer avail-

able.

N
O

T
E

After Microsoft removed the interactivity option, you only have control over the title that

appears in the window title bar. Annoyingly, in Excel 2010, this title also gets written to the

top center of your web page.

Click the Change Title button to change the <Title> tag for the web page. Type a name

that ends in either .html or .html and click Publish.

405Publishing Data to a Web Page

The result is a file that can be viewed in any web browser. The web page accurately shows

our number formats and font sizes (see Figure 16.8).

Where the macro from Chapter 14 did WBN.SaveAs, the new macro uses this code to write

out each web page:

HTMLFN = “C:\Intranet\” & ThisCust & “.html”
On Error Resume Next
Kill HTMLFN
On Error GoTo 0
With WBN.PublishObjects.Add(_
 SourceType:=xlSourceSheet, _
 Filename:=HTMLFN, _
 Sheet:=”Sheet1”, _
 Source:=””, _
 HtmlType:=xlHtmlStatic, _
 DivID:=”A”, _
 Title:=”Sales to “ & ThisCust)
 .Publish True
 .AutoRepublish = False
End With

Although the data is accurately presented in Figure 16.8, it is not extremely fancy. We don’t

have a company logo or navigation bar to examine other reports.

Figure 16.7
When saving as a web
page, you can control the
file name and a title.

Chapter 16 Reading from and Writing to the Web406

Using VBA to Create Custom Web Pages
Long before Microsoft introduced the Save as Web Page functionality, people had been

using VBA to take Excel data and publish it as HTML. The advantage of this method is

that you can write out specific HTML statements to display company logos and navigation

bars.

Consider a typical web page template:

■ There is code to display a logo and navigation bar at the top/side.

■ There is content for the page.

■ There is some HTML code to finish the page.

This macro will read the code behind a web page and write it to Excel:

Sub ImportHTML()
 ThisFile = “C:\Intranet\schedule.html”
 Open ThisFile For Input As #1
 Ctr = 2
 Do
 Line Input #1, Data
 Worksheets(“HTML”).Cells(Ctr, 2).Value = Data
 Ctr = Ctr + 1
 Loop While EOF(1) = False
 Close #1
End Sub

If you import the text of a web page into Excel, even if you don’t understand the HTML

involved, you can probably find the first lines that contain your page content.

Examine the HTML code in Excel. Copy the lines needed to draw the top part of the web

page to a worksheet called Top. Copy the lines of code needed to close the web page to a

worksheet called Bottom.

You can use VBA to write out the top, then generate content from your worksheet, and

then write out the bottom.

Figure 16.8
The formatting is close to
the original worksheet.

407Publishing Data to a Web Page

Using Excel as a Content Management System
Five hundred million people are proficient in Excel. Companies everywhere have data in

Excel, and many staffers who are comfortable in maintaining that data. Rather than force

these people to learn how to create HTML pages, why not build a content management

system to take their Excel data and write out custom web pages?

You probably already have data for the web page in Excel. Using the HTML to read the

HTML into Excel from above, you know the top and bottom portions of the HTML

needed to render the web page.

Building a content management system with these tools is simple. To the existing Excel

data, I added two worksheets. In the worksheet called Top, I copied the HTML needed

to generate the navigation bar of the website. To the worksheet called Bottom, I copied

the HTML needed to generate the end of the HTML page. Figure 16.9 shows the simple

Bottom worksheet.

Figure 16.9
Companies everywhere
are maintaining all sorts
of data in Excel and are
comfortable updating
the data in Excel. Why not
marry Excel with a simple
bit of VBA so that custom
HTML can be produced
from Excel?

The macro code opens a text file called directory.html for output. First, all the HTML code

from the Top worksheet is written to the file.

Then the macro loops through each row in the membership directory, writing data to the

file.

After completing this loop, the macro writes out the HTML code from the Bottom work-

sheet to finish the file:

Sub WriteMembershipHTML()
 ‘ Write web Pages
 Dim WST As Worksheet
 Dim WSB As Worksheet
 Dim WSM As Worksheet
 Set WSB = Worksheets(“Bottom”)
 Set WST = Worksheets(“Top”)
 Set WSM = Worksheets(“Membership”)

 ‘ Figure out the path
 MyPath = ThisWorkbook.Path

 LineCtr = 0

Chapter 16 Reading from and Writing to the Web408

 FinalT = WST.Cells(Rows.Count, 1).End(xlUp).Row
 FinalB = WSB.Cells(Rows.Count, 1).End(xlUp).Row
 FinalM = WSM.Cells(Rows.Count, 1).End(xlUp).Row

 MyFile = “sampleschedule.html”

 ThisFile = MyPath & Application.PathSeparator & MyFile
 ThisHostFile = MyFile

 ‘ Delete the old HTML page
 On Error Resume Next
 Kill (ThisFile)
 On Error GoTo 0

 ‘ Build the title
 ThisTitle = “<Title>LTCC Membership Directory</Title>”
 WST.Cells(3, 2).Value = ThisTitle

 ‘ Open the file for output
 Open ThisFile For Output As #1

 ‘ Write out the top part of the HTML
 For j = 2 To FinalT
 Print #1, WST.Cells(j, 2).Value
 Next j

 ‘ For each row in Membership, write out lines of data to HTML file
 For j = 2 To FinalM
 ‘ Surround Member name with bold tags
 Print #1, “” & WSM.Cells(j, 1).Value
 Next j

 ‘ Close old file
 Print #1, “This page current as of “ & Format(Date, “mmmm dd, yyyy”) & _
 “ “ & Format(Time, “h:mm AM/PM”)

 ‘ Write out HTML code from Bottom worksheet
 For j = 2 To FinalB
 Print #1, WSB.Cells(j, 2).Value
 Next j
 Close #1

 Application.StatusBar = False
 Application.CutCopyMode = False
 MsgBox “web pages updated”

End Sub

Figure 16.10 shows the finished web page. This web page looks a lot better than the

generic page created by Excel’s Save as Web Page option. It can maintain the look and feel

of the rest of the site.

This system has many advantages. The person who maintains the schedule data is comfort-

able working in Excel. She has already been maintaining the data in Excel on a regular

basis. Now, after updating some records, she presses a button to produce a new version of

the web page.

409Publishing Data to a Web Page

Of course, the web designer is clueless about Excel. However, if he ever wants to change

the web design, it is a simple matter to open his new sample.html file in Notepad and copy

the new code to the Top and Bottom worksheet.

The resulting web page has a small file size—about one-sixth the size of the equivalent page

created by Excel’s Save as Web Page.

Figure 16.10
A simple content-
management system in
Excel was used to gener-
ate this web page. The
look and feel matches the
rest of the website. Excel
achieved it without any
expensive web database
coding.

In real life, the content-management system in this example was extended to allow easy maintenance

of the organization’s calendar, board members, and so on. The resulting workbook made it possible to

maintain 41 web pages at the click of a button.

N
O

T
E

Bonus: FTP from Excel
After you are able to update web pages from Excel, you still have the hassle of using an

FTP program to upload the pages from your hard drive to the Internet. Again, we have lots

of people proficient in Excel, but not so many comfortable with using an FTP client.

Ken Anderson has written a cool command-line FTP freeware utility. Download WCL_

FTP from http://www.softlookup.com/display.asp?id=20483. Save WCL_FTP.exe to the

root directory of your hard drive, and then use this code to automatically upload your

recently created HTML files to your web server:

Sub DoFTP(fname, pathfname)
‘ To have this work, copy wcl_ftp.exe to the C:\ root directory
‘ Download from http://www.softlookup.com/display.asp?id=20483

http://www.softlookup.com/display.asp?id=20483

Chapter 16 Reading from and Writing to the Web410

‘ Build a string to FTP. The syntax is
‘ WCL_FTP.exe “Caption” hostname username password host-directory _
‘ host-filename local-filename get-or-put 0Ascii1Binanry 0NoLog _
‘ 0Background 1CloseWhenDone 1PassiveMode 1ErrorsText

If Not Worksheets(“Menu”).Range(“I1”).Value = True Then Exit Sub

s = “””c:\wcl_ftp.exe “” “ _
 & “””Upload File to website”” “ _
 & “ftp.MySite.com FTPUser FTPPassword www “ _
 & fname & “ “ _
 & “””” & pathfname & “”” “ _
 & “put “ _
 & “0 0 0 1 1 1”

Shell s, vbMinimizedNoFocus
End Sub

One of the new features in Excel 2010 is the ability

to create tiny, word-size charts. If you are creating

dashboards, you will want to leverage these charts.

The concept of sparklines was first introduced by

Professor Edward Tufte. Tufte promoted sparklines

as way to show a maximum amount of information

with a minimal amount of ink.

Microsoft supports three types of sparklines:

 ■ Line—A sparkline shows a single series on a

line chart within a single cell. On a sparkline,

you can add markers for the highest point, the

lowest point, the first point, or the last point.

Each of those points can have a different color.

You can also choose to mark all of the negative

points or even all points.

 ■ Column—A sparkcolumn shows a single series

on a column chart. You can choose to show a

different color for the first bar, the last bar, the

lowest bar, the highest bar, and/or all negative

points.

 ■ Win/Loss—This is a special type of column

chart where every positive point is plotted

at a 100% height and every negative point is

plotted as –100% height. The theory is that

positive columns represent wins and negative

columns represent losses. With these charts

you will always want to change the color of the

negative columns. It is possible to highlight the

highest/lowest point based on the underlying

data.

Dashboarding with
Sparklines in Excel 2010

17

Chapter 17 Dashboarding with Sparklines in Excel 2010412

Creating Sparklines
Microsoft figures that you will usually be creating a group of sparklines. The main

VBA object for sparklines is the SparklineGroup. To create sparklines, you apply the

SparklineGroups.Add method to the range where you want the sparklines to appear.

In the Add method, you will specify a type for the sparkline and the location of the source

data.

Say that you apply the add method to a three-cell range of B2:D2. Then the source must be

a range that is either three columns wide or three rows tall.

The type parameter can be xlSparkLine for a line, xlSparkColumn for a column, or xlSpark-

Column100 for Win/Loss.

If the SourceData parameter is referring to ranges on the current worksheet, it can be as

simple as “D3:F100”. If it is pointing to another worksheet, use “Data!D3:F100” or “’My

Data’!D3:F100”. If you’ve defined a named range, you can specify the name of the range as

the source data.

Figure 17.1 shows a table of NASDAQ closing prices for three years. Notice that the actual

data for the sparklines is in three contiguous Columns, D, E, and F.

Figure 17.1
Arrange the data for the
sparklines in a contiguous
range.

Because each column might have one or two extra points, the code to find the final row is

slightly different than usual.

FinalRow = WSD.[A1].CurrentRegion.Rows.Count

The .CurrentRegion property will start from Cell A1 and extend in all directions until it

hits the edge of the worksheet or the edge of the data.

In this case, the CurrentRegion will report that row 253 is the final row, even though A253

and D253 are blank (see Figure 17.2).

For this example, the sparklines will be created in a row of three cells. Because each cell is

showing 250 points, I am going with fairly large sparklines. The sparkline will grow to the

size of the cell, so this code will make each cell fairly wide and tall:

With WSL.Range(“B1:D1”)
 .Value = array(2007,2008,2009)
 .HorizontalAlignment = xlCenter
 .Style = “Title”
 .ColumnWidth = 39
 .Offset(1, 0).RowHeight = 100
End With

413Creating Sparklines

The following code will create three default sparklines. These won’t be perfect, but the next

section shows you how to format them.

Dim SG as SparklineGroup
Set SG = WSL.Range(“B2:D2”).SparklineGroups.Add(_
 Type:=xlSparkLine, _
 SourceData:=”Data!D2:F” & FinalRow

The three sparklines are shown in Figure 17.3. There are a number of problems with the

default sparklines. Think about the vertical axis of a chart. Sparklines always default to have

the scale automatically selected. Because you never really get to see what the scale is, you

cannot tell the range of the change.

Figure 17.2
The sparkline source
should extend to row 253.

Figure 17.4 shows the min and max for each year. From this data, you can guess that the

sparkline for 2007 probably goes from about 2300 to 2900. The sparkline for 2008 probably

goes from 1300 to 2650. The sparkline for 2009 probably goes from 1250 to 2300.

Gaps because vertical scales are different.

Figure 17.3
Three default sparklines.

Figure 17.4
Each sparkline will
assign the minimum and
maximum scale to be just
outside of these limits.

Chapter 17 Dashboarding with Sparklines in Excel 2010414

Scaling the Sparklines
The default choice for the sparkline vertical axis is that each sparkline will have a different

minimum and maximum.

There are two other choices available.

One choice is to group all the sparklines together, but to continue to allow Excel to choose

the minimum and maximum scale. You still won’t know exactly what values are chosen for

the minimum and maximum. Looking at Figure 17.5 it seems to be roughly 1200 to 2900,

but there is absolutely no way to tell for sure.

Figure 17.5
What is scale? It is hard
to tell.

To force the sparklines to have the same automatic scale, use this code:

‘ Allow automatic axis scale, but all three of them the same
With SG.Axes.Vertical
 .MinScaleType = xlSparkScaleGroup
 .MaxScaleType = xlSparkScaleGroup
End With

Note that the .Axes belongs to the sparkline group, not to the individual sparklines them-

selves. In fact, almost all of the good properties are applied at the SparklineGroup level.

This has some interesting ramifications. If you wanted one sparkline to have automatic

scale and another sparkline to have a fixed scale, you would have to create each of those

sparklines separately, or at least ungroup them.

Figure 17.6 shows the sparklines when both the minimum and maximum scales are set to

act as a group. All three lines nearly meet now, which is a good sign. You can guess that the

scale runs from about 1250 up to perhaps 1300. Again, there is no way to tell.

Figure 17.6
All three sparklines have
the same minimum and
maximum scale, but we
don’t know what it is.

Another choice is to take absolute control and assign a minimum and maximum for the ver-

tical axis scale. The following code forces the sparklines to run from a minimum of 0 up to

a maximum that rounds up to the next 100 above the largest value:

415Scaling the Sparklines

Set AF = Application.WorksheetFunction
AllMax = AF.Max(WSD.Range(“D2:F” & FinalRow))
AllMax = Int(AllMax / 100) * 100 + 100

‘ Allow automatic axis scale, but all three of them the same
With SG.Axes.Vertical
 .MinScaleType = xlSparkScaleCustom
 .MaxScaleType = xlSparkScaleCustom
 .CustomMinScaleValue = 0
 .CustomMaxScaleValue = AllMax
End With

Figure 17.7 shows the resulting sparklines. Now, you know the minimum and the maximum,

but you need a way to communicate this to the reader.

Figure 17.7
You’ve manually assigned
a min and max scale, but
it does not appear on the
chart.

One choice is to put the minimum scale on the lower left and the upper scale on the upper

right, as shown in Figure 17.8.

Text in A2 and E2

Figure 17.8
Labels in A2 and E2 show
the upper and lower
limits.

The code for Figure 17.8 is as follows:

‘ Add two labels to show minimum and maximum
With WSL.Range(“A2”)
 .Value = AllMin
 .HorizontalAlignment = xlRight
 .VerticalAlignment = xlBottom
 .Font.Size = 8
 .Font.Bold = True
 .WrapText = True
End With

With WSL.Range(“E2”)
 .Value = AllMax

Chapter 17 Dashboarding with Sparklines in Excel 2010416

 .HorizontalAlignment = xlLeft
 .VerticalAlignment = xlTop
 .Font.Size = 8
 .Font.Bold = True
End With

Alternatively, you could put the minimum and maximum value in A2. With 8-point bold

Calibri, a row height of 113 will allow 10 rows of wrapped text in the cell. So you could put

the max value, then VbLf 8 times, then the min value. (vbLf is the equivalent of pressing

Alt+Enter when you are entering values in a cell).

On the right side, you can put the final point’s value and attempt to position it within the

cell so that it falls roughly at the same height as the final point.

Figure 17.9 shows this option.

MaxMin Final

Figure 17.9
Labels on the left show
the min and max. Labels
on the right show the
final value.

The code to produce Figure 17.9 is shown here:

Sub NASDAQMacro()
‘ NASDAQMacro Macro
‘
Dim SG As SparklineGroup
Dim SL As Sparkline
Dim WSD As Worksheet ‘ Data worksheet
Dim WSL As Worksheet ‘ Dashboard

 On Error Resume Next
 Application.DisplayAlerts = False
 Worksheets(“Dashboard”).Delete
 On Error GoTo 0

 Set WSD = Worksheets(“Data”)
 Set WSL = ActiveWorkbook.Worksheets.Add
 WSL.Name = “Dashboard”

 FinalRow = WSD.Cells(1, 1).CurrentRegion.Rows.Count
 WSD.Cells(2, 4).Resize(FinalRow - 1, 3).Name = “MyData”

 WSL.Select
 ‘ Set up Headings
 With WSL.Range(“B1:D1”)
 .Value = Array(2007, 2008, 2009)
 .HorizontalAlignment = xlCenter

417Scaling the Sparklines

 .Style = “Title”
 .ColumnWidth = 39
 .Offset(1, 0).RowHeight = 100
 End With

 Set SG = WSL.Range(“B2:D2”).SparklineGroups.Add(_
 Type:=xlSparkLine, _
 SourceData:=”Data!D2:F250”)

 Set SL = SG.Item(1)

 Set AF = Application.WorksheetFunction
 AllMin = AF.Min(WSD.Range(“D2:F” & FinalRow))
 AllMax = AF.Max(WSD.Range(“D2:F” & FinalRow))
 AllMin = Int(AllMin)
 AllMax = Int(AllMax + 0.9)

‘ ‘ Allow automatic axis scale, but all three of them the same
‘ With SG.Axes.Vertical
‘ .MinScaleType = xlSparkScaleGroup
‘ .MaxScaleType = xlSparkScaleGroup
‘ End With

 ‘ Allow automatic axis scale, but all three of them the same
 With SG.Axes.Vertical
 .MinScaleType = xlSparkScaleCustom
 .MaxScaleType = xlSparkScaleCustom
 .CustomMinScaleValue = AllMin
 .CustomMaxScaleValue = AllMax
 End With

 ‘ Add two labels to show minimum and maximum
 With WSL.Range(“A2”)
 .Value = AllMax & vbLf & vbLf & vbLf & vbLf _
 & vbLf & vbLf & vbLf & vbLf & AllMin
 .HorizontalAlignment = xlRight
 .VerticalAlignment = xlTop
 .Font.Size = 8
 .Font.Bold = True
 .WrapText = True
 End With

 ‘ Put the final value on the right
 FinalVal = Round(WSD.Cells(Rows.Count, 6).End(xlUp).Value, 0)
 Rg = AllMax - AllMin
 RgTenth = Rg / 10
 FromTop = AllMax - FinalVal
 FromTop = Round(FromTop / RgTenth, 0) - 1
 If FromTop < 0 Then FromTop = 0

 Select Case FromTop
 Case 0
 RtLabel = FinalVal
 Case 1
 RtLabel = vbLf & FinalVal
 Case 2
 RtLabel = vbLf & vbLf & FinalVal
 Case 3

Chapter 17 Dashboarding with Sparklines in Excel 2010418

 RtLabel = vbLf & vbLf & vbLf & FinalVal
 Case 4
 RtLabel = vbLf & vbLf & _
 vbLf & vbLf & FinalVal
 Case 5
 RtLabel = vbLf & vbLf & _
 vbLf & vbLf & vbLf & FinalVal
 Case 6
 RtLabel = vbLf & vbLf & _
 vbLf & vbLf & vbLf & vbLf & FinalVal
 Case 7
 RtLabel = vbLf & vbLf & vbLf & vbLf _
 & vbLf & vbLf & vbLf & FinalVal
 Case 8
 RtLabel = vbLf & vbLf & vbLf & vbLf _
 & vbLf & vbLf & vbLf & vbLf & FinalVal
 Case 9
 RtLabel = vbLf & vbLf & vbLf & _
 vbLf & vbLf & vbLf & vbLf & _
 vbLf & vbLf & FinalVal
 End Select

 With WSL.Range(“E2”)
 .Value = RtLabel
 .HorizontalAlignment = xlLeft
 .VerticalAlignment = xlTop
 .Font.Size = 8
 .Font.Bold = True
 End With
End Sub

Formatting Sparklines
Most of the formatting available with sparklines involves setting the color of various ele-

ments of the sparkline.

There are a few methods for assigning colors in Excel 2010. Before diving into the spar-

kline properties, you can read about the two methods of assigning colors in Excel VBA.

Using Theme Colors
Excel 2007 introduced the concept of a theme for a workbook. A theme is comprised of a

body font, a headline font, a series of effects, and then a series of colors.

The first four colors are used for text and backgrounds. The next six colors are the accent

colors. The 20 built-in themes include colors that work well together. There are also two

colors used for hyperlinks and followed hyperlinks. For now, focus on the accent colors.

Go to Page Layout, Themes, and choose a theme. Next to the theme drop-down is a

Colors drop-down. Open that drop-down and select Create New Theme Colors from the

bottom of the drop-down. Excel will show the Create New Theme Colors dialog as shown

in Figure 17.10. This gives you a good picture of the 12 colors associated with the theme.

419Formatting Sparklines

Throughout Excel, there are many color chooser drop-downs (see Figure 17.11). There is

a section of the drop-down called Theme Colors. The top row under Theme colors shows

the four font and six accent colors.

Two Hyperlink

Colors

Six Accent Colors

Four Font Colors

Figure 17.10
The current theme
includes 12 colors.

xlThemeColorAccent6

0.8

0.6

0.4

-0.25

-0.5

xlThemeColorAccent1

Figure 17.11
All but the hyperlink
colors from the theme
appear across the top row.

If you want to choose the last color in the first row, the VBA is as follows:

ActiveCell.Font.ThemeColor = xlThemeColorAccent6

Going across that top row of Figure 17.11, the 10 colors are as follows:

xlThemeColorDark1
xlThemeColorLight1
xlThemeColorDark2

Chapter 17 Dashboarding with Sparklines in Excel 2010420

xlThemeColorLight2
xlThemeColorAccent1
xlThemeColorAccent2
xlThemeColorAccent3
xlThemeColorAccent4
xlThemeColorAccent5
xlThemeColorAccent6

On your computer, open the fill drop-down on the Home tab and look at it in color. If you

are using the Office theme, the last column is various shades of orange. The top row is the

orange from the theme.

There are then five rows that go from a light orange to a very dark orange.

Excel lets you modify the theme color by lightening or darkening it. The values range from

-1 which is very dark to +1 which is very light. If you look at the very light orange in Row

2, that has a tint and shade value of 0.8, which is almost completely light. The next row has

a tint and shade level of 0.6. The next row has a tint and shade level of 0.4. That gives you

three choices that are lighter than the theme color.

The next two rows are darker than the theme color. Because there are only two darker

rows, they have values of -.25, and -.5.

If you turn on the macro recorder and choose one of these colors, it looks like a confusing

bunch of code.

.Pattern = xlSolid

.PatternColorIndex = xlAutomatic

.ThemeColor = xlThemeColorAccent6

.TintAndShade = 0.799981688894314

.PatternTintAndShade = 0

If you are using a solid fill, you can leave out the first, second, and fifth lines of code. The

.TintAndShade looks confusing because computers cannot round decimal tenths very well.

Remember that computers store numbers in binary. In binary, a simple number like 0.1 is

a repeating decimal. As the macro recorder tries to convert 0.8 from binary to decimal, it

“misses” by a bit and comes up with a very close number: 0.7998168894314. This is really

saying that it should be 80 percent lighter than the base number.

If you are writing code by hand, you only have to assign two values to use a theme color.

Assign the .ThemeColor property to one of the six xlThemeColorAccent1 through xlThem-

eColorAccent6 values. If you want to use a theme color from the top row of the drop-down,

the .TintAndShade should be 0 and can be omitted. If you want to lighten the color, use a

positive decimal for .TintAndShade. If you want to darken the color, use a negative decimal.

Note that the five shades in the color palette drop-downs are not the complete set of variations. In VBA,

you can assign any decimal value from -1 to 1. Figure 17.12 shows 200 variations of one theme color

created using the .TintAndShade property in VBA.

T
IP

421Formatting Sparklines

To recap, if you want to work with theme colors, you will generally change two proper-

ties, the theme color in order to choose one of the six accent colors, then tint and shade to

lighten or darken the base color.

.ThemeColor = xlThemeColorAccent6

.TintAndShade = 0.4

Figure 17.12
Two hundred shades of
orange.

Note that one advantage of using theme colors is that your sparklines will change color based on the

theme. If you later decide to switch from the Office theme to the Metro theme, the colors will change to

match the theme.

N
O

T
E

To see a demo of using theme colors, search for Excel VBA 17 at YouTube.

Using RGB Colors
For the last decade, computers have offered a palette of 16 million colors. These colors

derive from adjusting the amount of red, green, and blue light in a cell.

Do you remember back in art class in elementary school? You probably learned that the

three primary colors were red, yellow, and blue. You could make green by mixing some yel-

low and blue paint. You could make purple by mixing some red and blue paint. You could

make orange by mixing some yellow and red paint. As all of my male classmates and I soon

discovered, you could make black by mixing all of the paint colors. Those rules all work

with pigments in paint, but they don’t work with light.

Chapter 17 Dashboarding with Sparklines in Excel 2010422

Those pixels on your computer screen are made of up light. In the light spectrum, the three

primary colors are red, green, and blue. You can make the 16 million colors of the RGB

color palette by mixing various amounts of red, green, and blue light. Each of the three col-

ors is assigned an intensity from 0 (no light) to 255 (full light).

You will often see a color described using the RGB function. In the function, the first value

is the amount of red, then green, then blue.

■ To make red, you use =RGB(255,0,0).

■ To make green, use =RGB(0,255,0).

■ To make blue, use =RGB(0,0,255).

■ What happens if you mix 100% of all three colors of light? You get white!

■ To make white, use =RGB(255,255,255).

■ If you shine no light in a pixel? You get black =RGB(0,0,0).

■ To make purple, it is some red, a little green, some blue: RGB(139,65,123).

■ To make yellow, use full red and green and no blue: =RGB(255,255,0).

■ To make orange, use less green than the yellow: =RGB(255,153,0).

In VBA, you can use the RGB function just as it is shown here. The macro recorder is not a

big fan of using the RGB function. It instead shows the result of the RGB function.

You can assign a number to each of the 16,777,216 colors by doing this math with the three

RGB values:

■ Take the red value times 1.

■ Add the green value times 256.

■ Add the blue value times 65,536.

In case you were wondering, 65,536 is 256 raised to the second power.

N
O

T
E

If you choose a red for your sparkline, you will frequently see the macro recorder assign a

.Color = 255. This is because =RGB(255,0,0) is 255.

When the macro recorder assigns a value of 5287936, it is pretty tough to figure that color

out. Here are the steps I use:

In Excel, enter =Dec2Hex(5287936). You will get an answer of 50B000. This is the color that

web designers refer to as #50B000.

Go to your favorite search engine and search for color chooser. You will find many utilities

where you can type in the hex color code and see the color.

423Formatting Sparklines

In Figure 17.13, ColorSchemer.com shows that #50B000 is RGB(80,176,0). This is a some-

what dark green color.

Enter Hex Here

Click Set Hex

RGB Values Here

Figure 17.13
Convert hex to RGB.

While you are at the web page, you can click around to find other shades of colors and see

the RGB values for those.

To recap, to skip theme colors and use RGB colors, you will set the .Color property to the

result of an RGB function.

Formatting Sparkline Elements
Figure 17.14 shows a plain sparkline. The data is created from 12 points that show perfor-

mance versus a budget. You really have no idea about the scale from this sparkline.

If your sparkline includes both positive and negative numbers, it will help to show the

horizontal axis. This will allow you to figure out which points are above budget and which

points are below budget.

To show the axis, use the following:

SG.Axes.Horizontal.Axis.Visible = True

Figure 17.15 shows the horizontal axis. This helps to show which months were above or

below budget.

Chapter 17 Dashboarding with Sparklines in Excel 2010424

Using code from “Scaling the Sparklines,” you can add high and low labels to the cell to the

left of the sparkline:

 Set AF = Application.WorksheetFunction
 MyMax = AF.Max(Range(“B5:B16”))
 MyMin = AF.Min(Range(“B5:B16”))
 LabelStr = MyMax & vbLf & vbLf & vbLf & vbLf & MyMin

 With SG.Axes.Vertical
 .MinScaleType = xlSparkScaleCustom
 .MaxScaleType = xlSparkScaleCustom
 .CustomMinScaleValue = MyMin
 .CustomMaxScaleValue = MyMax
 End With

 With Range(“D2”)
 .WrapText = True
 .Font.Size = 8
 .HorizontalAlignment = xlRight
 .VerticalAlignment = xlTop
 .Value = LabelStr
 .RowHeight = 56.25
 End With

The result of this macro is shown in Figure 17.16.

Figure 17.14
A default sparkline.

Figure 17.15
Add the horizontal axis to
show which months were
above or below budget.

425Formatting Sparklines

To change the color of the sparkline, use this:

SG.SeriesColor.Color = RGB(255, 191, 0)

The Show group of Sparkline Tools Design tab offers six options. You can further modify

those elements by using the Marker Color drop-down.

You can choose to turn on a marker for every point in the data set, as shown in Figure

17.17.

Figure 17.16
Use a nonsparkline
feature to label the verti-
cal axis.

Figure 17.17
Show All Markers.

The code to show a black marker at every point is as follows:

With SG.Points
 .Markers.Color.Color = RGB(0, 0, 0) ‘ black
 .Markers.Visible = True
End With

The code to show a black marker at every point is this:

With SG.Points
 .Markers.Color = RGB(0, 0, 0) ‘ black
 .Markers.Visible = True
End With

Instead, you can use the markers to show only the minimum, maximum, first, and last

points. This code will show the minimum in red, maximum in green, first and last in black:

With SG.Points
 .Lowpoint.Color.Color = RGB(255, 0, 0) ‘ red
 .Highpoint.Color.Color = RGB(51, 204, 77) ‘ Green
 .Firstpoint.Color.Color = RGB(0, 0, 255) ‘ Blue
 .Lastpoint.Color.Color = RGB(0, 0, 255) ‘ blue
 .Negative.Color.Color = RGB(127, 0, 0) ‘ pink
 .Markers.Color.Color = RGB(0, 0, 0) ‘ black
 ‘ Choose Which points to Show
 .Highpoint.Visible = True

Chapter 17 Dashboarding with Sparklines in Excel 2010426

 .Lowpoint.Visible = True
 .Firstpoint.Visible = True
 .Lowpoint.Visible = True
 .Negative.Visible = False
 .Markers.Visible = False
End With

Figure 17.18 shows the sparkline with the only the high, low, first, and last chosen.

Figure 17.18
Show only key markers.

One other element is the negative markers. These come in particularly handy when you are

formatting Win/Loss charts.

Formatting Win/Loss Charts
Win/Loss charts are a special type of sparkline for tracking binary events. The Win/Loss

chart shows an upward-facing marker for a positive value and a downward-facing marker

for any negative value. For a zero, no marker is shown.

You can use these charts to track proposal wins versus losses. In Figure 17.19, a Win/Loss

chart is showing the last 25 regular-season baseball games of the famed 1951 pennant race

between the Brooklyn Dodgers and the New York Giants. This chart shows how the Giants

went on a 7-game winning streak to finish the regular season. The Dodgers went 3-4 dur-

ing this period and ended in a tie with the Giants, forcing a three-game playoff. The Giants

won the first game, lost the second, and then advanced to the World Series by winning the

third playoff game. The Giants leapt out to a 2-1 lead over the Yankees but then lost three

straight.

Figure 17.19
This Win-Loss chart docu-
ments the most famous
pennant race in history.

The words Regular season, Playoff, and W. Series, as well as the two dotted lines, are not part of the

sparkline. The lines are drawing objects manually added with Insert, Shapes.

N
O

T
E

427Creating a Dashboard

To create the chart, you use .Add a SparkLineGroup with a type of xlSparkColumn-

Stacked100:

Set SG = Range(“B2:B3”).SparklineGroups.Add(_
 Type:=xlSparkColumnStacked100, _
 SourceData:=”C2:AD3”)

You will generally show the wins and losses as different colors. One obvious color scheme is

red for losses and green for wins.

There is no specific way to change only the “up” markers, so change the color of all mark-

ers to be green:

‘ Show all points as green
SG.SeriesColor.Color = 5287936

Then change the color of the negative markers to red:

‘Show losses as red
With SG.Points.Negative
 .Visible = True
 .Color.Color = 255
End With

It is easier to create the Up/Down charts. You don’t have to worry about setting the line

color. The vertical axis is always fixed.

Creating a Dashboard
Sparklines have the benefit of communicating a lot of information in a very tiny space. In

this section, you see how to fit 130 charts on one page.

Figure 17.20 shows a data set that summarizes a 1.8 million row dataset. I used the new

PowerPivot add-in for Excel to import the records and then calculated three new measures:

■ YTD Sales by month by store

■ YTD Sales by month for the previous year

■ % increase of YTD Sales versus previous year

This is a key statistic in retail stores; how are you doing versus the same time last year. Also

this analysis has the benefit of being cumulative. The final number for December repre-

sents if the store was up or down versus the previous year.

Figure 17.20
This summary of 1.8
million records is a sea of
numbers.

Chapter 17 Dashboarding with Sparklines in Excel 2010428

Observations About Sparklines
After working with sparklines for a while, some observations come to mind:

 ■ Sparklines are transparent. You can see through to the underlying cell. This means that

the fill color of the underlying cell will show through and the text in the underlying

cell will show through.

 ■ If you make the font really small and align the text with the edge of the cell, you can

make the text look like a title or a legend.

 ■ If you turn on wrap text and make the cell tall enough for 5 or 10 lines of text in the

cell, you can control the position of the text in the cell by using vbLf characters in

VBA.

 ■ Sparklines work better when they are bigger than a typical cell. All the examples in this

chapter either made the column wider, the height taller, or both.

 ■ Sparklines created together are grouped. Changes made to one sparkline are made to

all sparklines.

 ■ Sparklines can be created on a separate worksheet than the data.

 ■ Sparklines look better when there is some white space around the cells. This would be

tough to do manually because you would have to create each sparkline one at a time. It

is easy to do here because you can leverage VBA.

Creating 100’s of Individual Sparklines in a Dashboard
All those issues can be taken into account when creating this dashboard. The plan will be to

create each store’s sparkline individually. This will allow a blank row and column to appear

between every sparkline.

After inserting a new worksheet for the dashboard, you can format the cells with this code:

‘ Set up the dashboard as alternating cells for sparkline then blank
For c = 1 To 11 Step 2
 WSL.Cells(1, c).ColumnWidth = 15
 WSL.Cells(1, c + 1).ColumnWidth = 0.6
Next c
For r = 1 To 45 Step 2
 WSL.Cells(r, 1).RowHeight = 38
 WSL.Cells(r + 1, 1).RowHeight = 3
Next r

Keep track of which cell will contain the next sparkline with two variables:

NextRow = 1
NextCol = 1

Figure out how many rows of data there are on the Data worksheet. Loop from row 4 to

the final row. For each row, you will make a sparkline.

429Creating a Dashboard

Build a text string that points back to the correct row on the data sheet using this code. Use

that source when defining the sparkline:

ThisSource = “Data!B” & i & “:M” & i
Set SG = WSL.Cells(NextRow, NextCol).SparklineGroups.Add(_
 Type:=xlSparkColumn, _
 SourceData:=ThisSource)

You want to show a horizontal axis at the zero location. The range of values for all stores

was -5 percent to +10 percent. The maximum scale value here is being set to 0.15 to allow

extra room for the “title” in the cell:

SG.Axes.Horizontal.Axis.Visible = True
With SG.Axes.Vertical
 .MinScaleType = xlSparkScaleCustom
 .MaxScaleType = xlSparkScaleCustom
 .CustomMinScaleValue = -0.05
 .CustomMaxScaleValue = 0.15
End With

Like in the previous example with the Win/Loss chart, you will want the positive columns

to be green and the negative columns to be red:

‘ All columns green
SG.SeriesColor.Color = RGB(0, 176, 80)
‘ Negative columns red
SG.Points.Negative.Visible = True
SG.Points.Negative.Color.Color = RGB(255, 0, 0)

Remember that the sparkline has a transparent background. Thus, you can write really

small text to the cell, and it behaves almost like chart labels.

The following code joins together the store name and the final percentage change for the

year into a title for the chart. The program writes this title to the cell but makes it small,

centered, and vertically aligned.

ThisStore = WSD.Cells(i, 1).Value & “ “ & _
 Format(WSD.Cells(i, 13), “+0.0%;-0.0%;0%”)
‘ Add a label
With WSL.Cells(NextRow, NextCol)
 .Value = ThisStore
 .HorizontalAlignment = xlCenter
 .VerticalAlignment = xlTop
 .Font.Size = 8
 .WrapText = True
End With

The final element is to change the background color of the cell based on the final percent-

age. If it is up, then the background is light green. If it is down, then the background is

light red:

FinalVal = WSD.Cells(i, 13)
‘ Color the cell light red for negative, light green for positive
With WSL.Cells(NextRow, NextCol).Interior
 If FinalVal <= 0 Then
 .Color = 255
 .TintAndShade = 0.9

Chapter 17 Dashboarding with Sparklines in Excel 2010430

 Else
 .Color = 14743493
 .TintAndShade = 0.7
 End If
End With

Once that sparkline is done, the column and/or row positions are incremented to prepare

for the next chart:

NextCol = NextCol + 2
If NextCol > 11 Then
 NextCol = 1
 NextRow = NextRow + 2
End If

After this, the loop continues with the next store.

The complete code is shown here:

Sub StoreDashboard()
Dim SG As SparklineGroup
Dim SL As Sparkline
Dim WSD As Worksheet ‘ Data worksheet
Dim WSL As Worksheet ‘ Dashboard

 On Error Resume Next
 Application.DisplayAlerts = False
 Worksheets(“Dashboard”).Delete
 On Error GoTo 0

 Set WSD = Worksheets(“Data”)
 Set WSL = ActiveWorkbook.Worksheets.Add
 WSL.Name = “Dashboard”

 ‘ Set up the dashboard as alternating cells for sparkline then blank
 For c = 1 To 11 Step 2
 WSL.Cells(1, c).ColumnWidth = 15
 WSL.Cells(1, c + 1).ColumnWidth = 0.6
 Next c
 For r = 1 To 45 Step 2
 WSL.Cells(r, 1).RowHeight = 38
 WSL.Cells(r + 1, 1).RowHeight = 3
 Next r

 NextRow = 1
 NextCol = 1

 FinalRow = WSD.Cells(Rows.Count, 1).End(xlUp).Row

 For i = 4 To FinalRow
 ThisStore = WSD.Cells(i, 1).Value & “ “ & _
 Format(WSD.Cells(i, 13), “+0.0%;-0.0%;0%”)
 ThisSource = “Data!B” & i & “:M” & i
 FinalVal = WSD.Cells(i, 13)

431Creating a Dashboard

 Set SG = WSL.Cells(NextRow, NextCol).SparklineGroups.Add(_
 Type:=xlSparkColumn, _
 SourceData:=ThisSource)

 SG.Axes.Horizontal.Axis.Visible = True
 With SG.Axes.Vertical
 .MinScaleType = xlSparkScaleCustom
 .MaxScaleType = xlSparkScaleCustom
 .CustomMinScaleValue = -0.05
 .CustomMaxScaleValue = 0.15
 End With

 ‘ All columns green
 SG.SeriesColor.Color = RGB(0, 176, 80)
 ‘ Negative columns red
 SG.Points.Negative.Visible = True
 SG.Points.Negative.Color.Color = RGB(255, 0, 0)

 ‘ Add a label
 With WSL.Cells(NextRow, NextCol)
 .Value = ThisStore
 .HorizontalAlignment = xlCenter
 .VerticalAlignment = xlTop
 .Font.Size = 8
 .WrapText = True
 End With

 ‘ Color the cell light red for negative, light green for positive
 With WSL.Cells(NextRow, NextCol).Interior
 If FinalVal <= 0 Then
 .Color = 255
 .TintAndShade = 0.9
 Else
 .Color = 14743493
 .TintAndShade = 0.7
 End If
 End With

 NextCol = NextCol + 2
 If NextCol > 11 Then
 NextCol = 1
 NextRow = NextRow + 2
 End If
 Next i
End Sub

Figure 17.21 shows the final dashboard. This prints on a single page and summarizes 1.8

million rows of data.

If you zoom in, you can see that every cell tells a story. In Figure 17.22, Park Meadows had

a great January, managed to stay ahead of last year through the entire year, and finished

up 0.8 percent. Lakeside also had a positive January, but then a bad February and a worse

March. They struggled back toward 0 percent for the rest of the year but ended up off

seven-tenths of a percent.

Chapter 17 Dashboarding with Sparklines in Excel 2010432

Figure 17.21
One page summarizes the
sales from 140 stores.

The report is addictive. I find myself studying all sorts of trends, but then I have to remind myself that I

created the 1.8 million row dataset using RandBetween just a few weeks ago! The report is so com-

pelling I am getting drawn into studying fictional data.

N
O

T
E

Figure 17.22
Detail of two sparkline
charts.

Word, Excel, PowerPoint, Outlook, and Access all

use the same VBA language. The only difference

is their object models. For example, Excel has a

Workbooks object and Word has Documents. Any one

of these applications can access another applica-

tion’s object model as long as the second application

is installed.

To access Word’s object library, Excel must estab-

lish a link to it by using either early binding or late

binding. With early binding, the reference to the

application object is created when the program is

compiled. With late binding, the reference is created

when the program is run.

This chapter is an introduction to accessing Word

from Excel.

Automating Word

18

Because this chapter does not review Word’s entire object model or the

object models of other applications, refer to the VBA Object Browser in

the appropriate application to learn about other object models.

N
O

T
E

Early Binding
Code written with early binding executes faster

than code with late binding. A reference is made to

Word’s object library before the code is written so

that Word’s objects, properties, and methods are

available in the Object Browser. Tips such as a list

of members of an object also appear, as shown in

Figure 18.1.

The disadvantage of early binding is that the refer-

enced object library must exist on the system. For

example, if you write a macro referencing Word

2010’s object library and someone with Word 2003

Chapter 18 Automating Word434

attempts to run the code, the program fails because the program cannot find the Word

2010 object library.

The object library is added through the VB Editor, as follows:

 1. Select Tools, References.

 2. Check Microsoft Word 14.0 Object Library in the Available References list (see Figure

18.2).

 3. Click OK.

Figure 18.1
Early binding allows
access to the Word
object’s syntax.

Figure 18.2
Select the object library
from the References list

If the object library is not found, Word is not installed. If another version is found in the list such as 10.0,

another version of Word is installed.

N
O

T
E

435Early Binding

After the reference is set, Word variables can be declared with the correct Word variable

type. However, if the object variable is declared As Object, this forces the program to use

late binding:

Sub WordEarlyBinding()
Dim wdApp As Word.Application
Dim wdDoc As Document
Set wdApp = New Word.Application
Set wdDoc = wdApp.Documents.Open(ThisWorkbook.Path & _
 “\Chapter 18 - Automating Word.docx”)
wdApp.Visible = True
Set wdApp = Nothing
Set wdDoc = Nothing
End Sub

This example creates a new instance of Word and opens an existing Word document from

Excel. The declared variables, wdApp and wdDoc, are of Word object types. wdApp is used to

create a reference to the Word application in the same way the Application object is used

in Excel. New Word.Application is used to create a new instance of Word.

Excel searches through the selected libraries to find the reference for the object type. If the type is

found in more than one library, the first reference is selected. You can influence which library is chosen

by changing the priority of the reference in the listing.

T
IP

If you are opening a document in a new instance of Word, Word is not visible. If the application needs to

be shown, it must be unhidden (wdApp.Visible = True).

T
IP

When finished, it’s a good idea to set the object variables to Nothing and release the mem-

ory being used by the application, as follows:

Set wdApp = Nothing
Set wdDoc = Nothing

Compile Error: Can’t Find Object or Library
If the referenced version of Word does not exist on the system, an error message appears,

as shown in Figure 18.3. View the References list; the missing object is highlighted with the

word MISSING (see Figure 18.4).

Chapter 18 Automating Word436

If a previous version of Word is available, you can try running the program with that ver-

sion referenced. Many objects are the same between versions.

Late Binding
When using late binding, you are creating an object that refers to the Word application

before linking to the Word library. Because you do not set up a reference beforehand, the

only constraint on the Word version is that the objects, properties, and methods must exist.

In the case where there are differences, the version can be verified and the correct object

used accordingly.

The disadvantage of late binding is that because Excel does not know what is going on, it

does not understand that you are referring to Word. This prevents the tips from appear-

ing when referencing Word objects. In addition, built-in constants are not available. This

means that when Excel is compiling, it cannot verify that the references to Word are cor-

rect. After the program is executed, the links to Word begin to build, and any coding errors

are detected at that point.

Figure 18.3
Attempting to compile a
program with a missing
reference library will gen-
erate an error message.

Figure 18.4
Excel will list the missing
library for you.

437Creating and Referencing Objects

The following example creates a new instance of Word, and then opens and makes visible

an existing Word document:

Sub WordLateBinding()
Dim wdApp As Object, wdDoc As Object
Set wdApp = CreateObject(“Word.Application”)
Set wdDoc = wdApp.Documents.Open(ThisWorkbook.Path & _
“\Chapter 18 - Automating Word.docx”)
wdApp.Visible = True
Set wdApp = Nothing
Set wdDoc = Nothing
End Sub

An object variable (wdApp) is declared and set to reference the application

(CreateObject(“Word.Application”)). Other required variables are then declared (wdDoc),

and the application object is used to refer these variables to Word’s object model.

Declaring wdApp and wdDoc as objects forces the use of late binding. The program cannot create the

required links to the Word object model until it executes the CreateObject function.

C A U T I O N

Creating and Referencing Objects
The following sections describe how to create new objects and how to reference currently

open objects.

The New Keyword
In the early binding example, the keyword New was used to reference the Word application.

The New keyword can be used only with early binding; it does not work with late binding.

CreateObject or GetObject would also work, but New is best for this example. If an instance

of the application is running and you want to use it, use the GetObject function instead.

If your code to open Word runs smoothly, but you don’t see an instance of Word (and should because

you code it to be Visible), open your Task Manager and look for the process WinWord.exe. If it exists,

from the Immediate window in Excel’s VB Editor, type the following (which uses early binding):

Word.Application.Visible = True

If multiple instances of WinWord.exe are found, you need to make each instance visible and close

the extra instance(s) of WinWord.exe.

C A U T I O N

Chapter 18 Automating Word438

CreateObject Function
The CreateObject function was used in the late binding example. However, this function

can also be used in early binding. CreateObject has a class parameter consisting of the

name and type of the object to be created (Name.Type). For example, the examples in this

chapter have shown you (Word.Application), in which Word is the Name and Application is

the Type.

The CreateObject function creates a new instance of the object. In this case, the Word

application is created.

GetObject Function
The GetObject function can be used to reference an instance of Word that is already run-

ning. It creates an error if no instance can be found.

GetObject’s two parameters are optional. The first parameter specifies the full path and file-

name to open, while the second parameter specifies the application program. The following

example leaves off the application, allowing the default program, which is Word, to open

the document:

Sub UseGetObject()
Dim wdDoc As Object
Set wdDoc = GetObject(ThisWorkbook.Path & “\Chapter 18 - Automating _
 Word.docx”)
wdDoc.Application.Visible = True
Set wdDoc = Nothing
End Sub

This example opens a document in an existing instance of Word and ensures the Word

application’s Visible property is set to True. Note that to make the document visible, you

have to refer to the application object (wdDoc.Application.Visible) because wdDoc is refer-

encing a document rather than the application.

Although the Word application’s Visible property is set to True, this code does not make the Word

application the active application. In most cases, the Word application icon stays in the taskbar, and

Excel remains the active application on the user’s screen.

N
O

T
E

The following example uses errors to learn whether Word is already open before pasting

a chart at the end of a document. If Word is not open, it opens Word and creates a new

document:

Sub IsWordOpen()
Dim wdApp As Word.Application

ActiveChart.ChartArea.Copy

On Error Resume Next
Set wdApp = GetObject(, “Word.Application”)

439Using Constant Values

If wdApp Is Nothing Then
 Set wdApp = GetObject(“”, “Word.Application”)
 With wdApp
 .Documents.Add
 .Visible = True
 End With
End If
On Error GoTo 0

With wdApp.Selection
 .EndKey Unit:=wdStory
 .TypeParagraph
 .PasteSpecial Link:=False, DataType:=wdPasteOLEObject, _
 Placement:=wdInLine, DisplayAsIcon:=False
End With

Set wdApp = Nothing
End Sub

Using On Error Resume Next forces the program to continue even if it runs into an error.

In this case, an error occurs when we attempt to link wdApp to an object that does not exist.

wdApp will have no value. The next line, If wdApp Is Nothing then, takes advantage of this

and opens an instance of Word, adding an empty document and making the application vis-

ible.

Note the use of empty quotes for the first parameter in GetObject(“”, “Word.

Application”). This is how to use the GetObject function to open a new instance of Word. Use

On Error Goto 0 to return to normal VBA handling behavior.

T
IP

Using Constant Values
The previous example used constants that are specific to Word such as wdPasteOLEObject

and wdInLine. When you are programming using early binding, Excel helps by showing

these constants in the tip window.

With late binding, these tips will not appear. So what can you do? You might write your

program using early binding, and then change it to late binding after you compile and test

the program. The problem with this method is that the program will not compile because

Excel does not recognize the Word constants.

The words wdPasteOLEObject and wdInLine are for your convenience as a programmer.

Behind each of these text constants is the real value that VBA understands. The solution to

this is to retrieve and use these real values with your late binding program.

Chapter 18 Automating Word440

Using the Watch Window to Retrieve the Real Value of a Constant
One way to retrieve the value is to add a watch for the constants. Then, step through your

code and check the value of the constant as it appears in the Watch window, as shown in

Figure 18.5.

Figure 18.5
Use the Watch window to
get the real value behind
a Word constant.

Using the Object Browser to Retrieve the Real Value of a Constant
Another way to retrieve the value is to look up the constant in the Object Browser.

However, you need the Word library set up as a reference to use this method. To set up the

Word library, right-click in the constant and select Definition. The Object Browser opens

to the constant that shows the value in the bottom window, as shown in Figure 18.6.

You can set up the Word reference library to be accessed from the Object Browser. However, you do not

have to set up your code with early binding. In this way, the reference is at your fingertips, but your

code is still late binding. Turning off the reference library is just a few clicks away.

N
O

T
E

Figure 18.6
User the Object Browser
to get the real value
behind a Word constant.

Replacing the constants in the earlier code example with their real values would look like

this:

With wdApp.Selection
 .EndKey Unit:=6
 .TypeParagraph
 .PasteSpecial Link:=False, DataType:=0, _
 Placement:=0, DisplayAsIcon:=False
End With

441Understanding Word’s Objects

However, what happens a month from now when you return to the code and you try to

remember what those numbers mean? The solution is up to you. Some programmers add

comments to the code referencing the Word constant. Other programmers create their own

variables to hold the real value and use those variables in place of the constants, like this:

Const xwdStory As Long = 6
Const xwdPasteOLEObject As Long = 0
Const xwdInLine As Long = 0

With wdApp.Selection
 .EndKey Unit:=xwdStory
 .TypeParagraph
 .PasteSpecial Link:=False, DataType:=xwdPasteOLEObject, _
 Placement:=xwdInLine, DisplayAsIcon:=False
End With

Understanding Word’s Objects
Word’s macro recorder can be used to get a preliminary understanding of the Word object

model. However, much like Excel’s macro recorder, the results will be long-winded. Keep

this in mind and use the recorder to lead you toward the objects, properties, and methods

in Word.

The macro recorder is limited in what it allows you to record. The mouse cannot be used to move the

cursor or select objects, but there are no limits in doing so with the keyboard.

C A U T I O N

The following example is what the Word macro recorder produces when adding a new,

blank document.

Documents.Add Template:=”Normal”, NewTemplate:=False, DocumentType:=0

Making this more efficient in Word produces this:

Documents.Add

Template, NewTemplate, and DocumentType are all optional properties that the recorder

includes but are not required unless you need to change a default property or ensure that a

property is what you require.

To use the same line of code in Excel, a link to the Word object library is required, as you

learned earlier. After that link is established, an understanding of Word’s objects is all you

need. The next section is a review of some of Word’s objects—enough to get you off the

ground. For a more detailed listing, refer to the object model in Word’s VB Editor.

Chapter 18 Automating Word442

Document Object
Word’s Document object is equivalent to Excel’s Workbook object. It consists of characters,

words, sentences, paragraphs, sections, and headers/footers. It is through the Document

object that methods and properties affecting the entire document such as printing, closing,

searching, and reviewing, are accomplished.

Create a New Blank Document

To create a blank document in an existing instance of Word, use the Add method. We

already learned how to create a new document when Word is closed—refer to GetObject

and CreateObject:

Sub NewDocument()
Dim wdApp As Word.Application

Set wdApp = GetObject(, “Word.Application”)

wdApp.Documents.Add

Set wdApp = Nothing
End Sub

This example opens a new, blank document that uses the default template. To create a new

document that uses a specific template, use this:

wdApp.Documents.Add Template:=”Contemporary Memo.dotx”

This creates a new document that uses the Contemporary Memo template. Template can

either be the name of a template from the default template location or the file path and

name.

Open an Existing Document

To open an existing document, use the Open method. Several parameters are available

including Read Only and AddtoRecentFiles. The following example opens an existing docu-

ment as Read Only, but prevents the file from being added to the Recent File List under the

File menu:

wdApp.Documents.Open _
 Filename:=”C:\Excel VBA 2007 by Jelen & Syrstad\Chapter 19 - _
 Arrays.docx”, ReadOnly:=True, AddtoRecentFiles:=False

Save Changes to a Document

After changes have been made to a document, most likely you will want to save it. To save a

document with its existing name, use this:

wdApp.Documents.Save

If the Save command is used with a new document without a name, the Save As dialog box

appears. To save a document with a new name, you can use the SaveAs method instead:

wdApp.ActiveDocument.SaveAs “C:\Excel VBA 2007 by Jelen & _
 Syrstad\MemoTest.docx”

443Understanding Word’s Objects

SaveAs requires the use of members of the Document object, such as ActiveDocument.

Close an Open Document

Use the Close method to close a specified document or all open documents. By default, a

Save dialog appears for any documents with unsaved changes. The SaveChanges argument

can be used to change this. To close all open documents without saving changes, use this

code:

wdApp.Documents.Close SaveChanges:=wdDoNotSaveChanges

To close a specific document, you can close the active document or you can specify a docu-

ment name:

wdApp.ActiveDocument.Close

or

wdApp.Documents(“Chapter 19 - Arrays.docx”).Close

Print a Document

Use the PrintOut method to print part or all of a document. To print a document with all

the default print settings, use this:

wdApp.ActiveDocument.PrintOut

By default, the print range is the entire document, but this can be changed by setting the

Range and Pages arguments of the PrintOut method:

wdApp.ActiveDocument.PrintOut Range:=wdPrintRangeOfPages, Pages:=”2”

Selection Object
The Selection object represents what is selected in the document, such as a word, sen-

tence, or the insertion point. It also has a Type property that returns the type that is selected

such as wdSelectionIP, wdSelectionColumn, and wdSelectionShape.

HomeKey/EndKey

The HomeKey and EndKey methods are used to change the selection; they correspond to

using the Home and End keys, respectively, on the keyboard. They have two parameters:

Unit and Extend. Unit is the range of movement to make, to either the beginning (Home) or

end (End) of a line (wdLine), document (wdStory), column (wdColumn), or row (wdRow). Extend

is the type of movement: wdMove moves the selection, wdExtend extends the selection from

the original insertion point to the new insertion point.

To move the cursor to the beginning of the document, use this code:

wdApp.Selection.HomeKey Unit:=wdStory, Extend:=wdMove

To select the document from the insertion point to the end of the document, use this code:

wdApp.Selection.EndKey Unit:=wdStory, Extend:=wdExtend

Chapter 18 Automating Word444

TypeText

The TypeText method is used to insert text into a Word document. User settings, such as

the Overtype setting, can affect what will happen when text is inserted into the document:

Sub InsertText()
Dim wdApp As Word.Application
Dim wdDoc As Document
Dim wdSln As Selection

Set wdApp = GetObject(, “Word.Application”)
Set wdDoc = wdApp.ActiveDocument
Set wdSln = wdApp.Selection

wdDoc.Application.Options.Overtype = False
With wdSln
 If .Type = wdSelectionIP Then
 .TypeText (“Inserting at insertion point. “)
 ElseIf .Type = wdSelectionNormal Then
 If wdApp.Options.ReplaceSelection Then
 .Collapse Direction:=wdCollapseStart
 End If
 .TypeText (“Inserting before a text block. “)
 End If
End With
Set wdApp = Nothing
Set wdDoc = Nothing
End Sub

Range Object
The Range object uses the following syntax:

Range(StartPosition, EndPosition)

The Range object represents a contiguous area or areas in the document. It has a starting

character position and an ending character position. The object can be the insertion point,

a range of text, or the entire document including nonprinting characters such as spaces or

paragraph marks.

The Range object is similar to the Selection object, but in some ways it is better. For exam-

ple, the Range object requires less code to accomplish the same tasks, and it has more capa-

bilities. In addition, it saves time and memory because the Range object does not require

Word to move the cursor or highlight objects in the document to manipulate them.

Define a Range

To define a range, enter a starting and ending position, as shown in this code segment:

Sub RangeText()
Dim wdApp As Word.Application
Dim wdDoc As Document
Dim wdRng As Word.Range

Set wdApp = GetObject(, “Word.Application”)
Set wdDoc = wdApp.ActiveDocument

445Understanding Word’s Objects

Set wdRng = wdDoc.Range(0, 22)
wdRng.Select

Set wdApp = Nothing
Set wdDoc = Nothing
Set wdRng = Nothing
End Sub

Figure 18.7 shows the results of running this code. The first 22 characters are selected

including nonprinting characters such as paragraph returns.

The range was selected (wdRng.Select) for easier viewing. It is not required that the range be

selected to be manipulated. For example, to delete the range, do this:

wdRng.Delete

N
O

T
E

The first character position in a document is always zero, and the last is equivalent to the

number of characters in the document.

The Range object also selects paragraphs. The following example copies the third paragraph

in the active document and pastes it in Excel. Depending on how the paste is done, the text

can be pasted into a text box (see Figure 18.8) or into a cell (see Figure 18.9):

Sub SelectSentence()
Dim wdApp As Word.Application
Dim wdRng As Word.Range

Set wdApp = GetObject(, “Word.Application”)

With wdApp.ActiveDocument
 If .Paragraphs.Count >= 3 Then
 Set wdRng = .Paragraphs(3).Range
 wdRng.Copy
 End If
End With

‘This line pastes the copied text into a text box

Figure 18.7
The Range object
selects everything in its
path.

Chapter 18 Automating Word446

‘because that isthe default PasteSpecial method for Word text
Worksheets(“Sheet2”).PasteSpecial

‘This line pastes the copied text in cell A1
Worksheets(“Sheet2”).Paste Destination:=Worksheets(“Sheet2”).Range(“A1”)

Set wdApp = Nothing
Set wdRng = Nothing
End Sub

Format a Range

After a range is selected, formatting can be applied to it (see Figure 18.10). The following

program loops through all the paragraphs of the active document and bolds the first word

of each paragraph:

Sub ChangeFormat()
Dim wdApp As Word.Application
Dim wdRng As Word.Range
Dim count As Integer

Set wdApp = GetObject(, “Word.Application”)

With wdApp.ActiveDocument
 For count = 1 To .Paragraphs.count
 Set wdRng = .Paragraphs(count).Range
 With wdRng
 .Words(1).Font.Bold = True
 .Collapse
 End With
 Next count
End With

Set wdApp = Nothing
Set wdRng = Nothing
End Sub

Figure 18.8
Paste Word text into an
Excel text box.

Figure 18.9
Paste Word text into an
Excel cell.

447Understanding Word’s Objects

A quick way of changing the formatting of entire paragraphs is to change the style (see

Figures 18.11 and 18.12). The following program finds the paragraph with the NO style

and changes it to HA:

Sub ChangeStyle()
Dim wdApp As Word.Application
Dim wdRng As Word.Range
Dim count As Integer

Set wdApp = GetObject(, “Word.Application”)

With wdApp.ActiveDocument
 For count = 1 To .Paragraphs.count
 Set wdRng = .Paragraphs(count).Range
 With wdRng
 If .Style = “NO” Then
 .Style = “HA”
 End If
 End With
 Next count
End With

Set wdApp = Nothing
Set wdRng = Nothing
End Sub

Figure 18.10
Format the first word
of each paragraph in a
document.

Figure 18.11
Before: A paragraph with
the NO style needs to be
changed to the HA style.

Figure 18.12
After: Apply styles with
code to change paragraph
formatting quickly.

Chapter 18 Automating Word448

Bookmarks
Bookmarks are members of the Document, Selection, and Range objects. They can help

make it easier to navigate around Word. Instead of having to choose words, sentences, or

paragraphs, use bookmarks to manipulate sections of a document swiftly.

You are not limited to using only existing bookmarks. Instead, bookmarks can be created using code.

N
O

T
E

Bookmarks appear as gray I-bars in Word documents. In Word, click the Microsoft Office

Button, and then select Options, Advanced, Show Document Contents to turn on book-

marks (see Figure 18.13).

After you have set up bookmarks in a document, you can use the bookmarks to move

quickly to a range. The following code automatically inserts text after four bookmarks that

were previously set up in the document. Figure 18.14 shows the results.

Sub UseBookmarks()
Dim myArray()
Dim wdBkmk As String

Dim wdApp As Word.Application
Dim wdRng As Word.Range

myArray = Array(“To”, “CC”, “From”, “Subject”)
Set wdApp = GetObject(, “Word.Application”)

Set wdRng = wdApp.ActiveDocument.Bookmarks(myArray(0)).Range
wdRng.InsertBefore (“Bill Jelen”)
Set wdRng = wdApp.ActiveDocument.Bookmarks(myArray(1)).Range
wdRng.InsertBefore (“Tracy Syrstad”)
Set wdRng = wdApp.ActiveDocument.Bookmarks(myArray(2)).Range
wdRng.InsertBefore (“MrExcel”)
Set wdRng = wdApp.ActiveDocument.Bookmarks(myArray(3)).Range
wdRng.InsertBefore (“Fruit & Vegetable Sales”)
Set wdApp = Nothing
Set wdRng = Nothing
End Sub

Bookmarks can also be used as markers for bringing in charts created in Excel. The follow-

ing code pastes an Excel chart (see Figure 18.15) into the memo:

Sub CreateMemo()
Dim myArray()
Dim wdBkmk As String

Dim wdApp As Word.Application
Dim wdRng As Word.Range

myArray = Array(“To”, “CC”, “From”, “Subject”, “Chart”)
Set wdApp = GetObject(, “Word.Application”)

449Understanding Word’s Objects

Set wdRng = wdApp.ActiveDocument.Bookmarks(myArray(0)).Range
wdRng.InsertBefore (“Bill Jelen”)
Set wdRng = wdApp.ActiveDocument.Bookmarks(myArray(1)).Range
wdRng.InsertBefore (“Tracy Syrstad”)
Set wdRng = wdApp.ActiveDocument.Bookmarks(myArray(2)).Range
wdRng.InsertBefore (“MrExcel”)
Set wdRng = wdApp.ActiveDocument.Bookmarks(myArray(3)).Range
wdRng.InsertBefore (“Fruit & Vegetable Sales”)

Set wdRng = wdApp.ActiveDocument.Bookmarks(myArray(4)).Range
ActiveSheet.ChartObjects(“Chart 1”).Copy
wdRng.PasteAndFormat Type:=wdPasteOLEObject

wdApp.Activate

Set wdApp = Nothing
Set wdRng = Nothing
End Sub

Figure 18.13
Turn on bookmarks to
find them in a document.

Figure 18.14
Use bookmarks to enter
text quickly into a Word
document.

Chapter 18 Automating Word450

Figure 18.15
Use bookmarks to bring
charts into Word docu-
ments.

Controlling Form Fields in Word
You have seen how to modify a document by inserting charts and text, modifying format-

ting, and deleting text. However, a document may contain other items such as controls that

you can modify.

For the following example, a template was created consisting of text, bookmarks, and Form

Field check boxes. (See the note following this paragraph for information on where the

Form Fields are hiding in Word.) The bookmarks are placed after the Name and Date

fields. Notice that the check boxes have all been renamed so they make more sense. For

example, one bookmark was renamed chk401k rather than Checkbox5. Save the template.

The Word Form Fields are found on the Controls section of the Developer tab under Legacy Forms, as

shown in Figure 18.16.

N
O

T
E

To rename a bookmark, right-click the check box, select Properties, and type a new name in the

Bookmark field.

T
IP

451Controlling Form Fields in Word

The code goes into a standard module. The name and date go straight into the document.

The check boxes use logic to verify whether the user selected Yes or No to confirm whether

the corresponding check box should be checked. Figure 18.18 shows a sample document

that has been completed.

Sub FillOutWordForm()
Dim TemplatePath As String
Dim wdApp As Object
Dim wdDoc As Object

‘Open the template in a new instance of Word
TemplatePath = ThisWorkbook.Path & “\New Client.dotx”
Set wdApp = CreateObject(“Word.Application”)
Set wdDoc = wdApp.documents.Add(Template:=TemplatePath)

‘Place our text values in document
With wdApp.ActiveDocument
 .Bookmarks(“Name”).Range.InsertBefore Range(“B1”).Text
 .Bookmarks(“Date”).Range.InsertBefore Range(“B2”).Text
End With

‘Using basic logic, select the correct form object
If Range(“B3”).Value = “Yes” Then
 wdDoc.formfields(“chkCustYes”).CheckBox.Value = True
Else
 wdDoc.formfields(“chkCustNo”).CheckBox.Value = True
End If

With wdDoc
 If Range(“B5”).Value = “Yes” Then .Formfields(“chk401k”).CheckBox.Value = _
 True

Figure 18.16
You can use the Form
Fields found under the
Legacy Tools to add check
boxes to a document.

Figure 18.17
Create an Excel sheet to
collect your data.

The questionnaire was set up in Excel, allowing the user to enter free text in B1 and B2,

but setting up data validation in B3 and B5:B8, as shown in Figure 18.17.

Chapter 18 Automating Word452

 If Range(“B6”).Value = “Yes” Then .Formfields(“chkRoth”).CheckBox.Value _
 = True
 If Range(“B7”).Value = “Yes” Then .Formfields(“chkStocks”). _
CheckBox.Value = True
 If Range(“B7”).Value = “Yes” Then .Formfields(“chkBonds”). _
CheckBox.Value = True
End With

wdApp.Visible = True

ExitSub:

 Set wdDoc = Nothing
 Set wdApp = Nothing

End Sub

Due to new security precautions, if the location is not trusted in the file’s parent application, the code

might run into an error when opening a template containing macros or controls. For example, the

previous code will run into an error when opening the template on a network. Therefore users need to

either configure Word to trust the network location or save the files to a local drive before running the

program. Another option is to use a document instead of a template and set the ReadOnly:=True

when opening the file.

C A U T I O N

Figure 18.18
Excel can control Word’s
form fields.

An array is a type of variable that can be used to

hold more than one piece of data. For example, if

you have to work with the name and address of a

client, your first thought might be to assign one

variable for the name and another for the address of

the client. Instead, consider using an array, which

can hold both pieces of information—and not for

just one client, but for hundreds.

Declare an Array
Declare an array by adding parentheses after the

array name. The parentheses contain the number of

elements in the array:

Dim myArray (2)

This creates an array, myArray, which contains three

elements. Three elements are included because, by

default, the index count starts at 0:

myArray(0) = 10
myArray(1) = 20
myArray(2) = 30

If the index count needs to start on 1, use Option

Base 1. This forces the count to start at 1. To do

this, place the Option Base statement in the decla-

rations section of the module:

Option Base 1
Dim myArray(2)

This now forces the array to have only two ele-

ments.

You can also create an array independent of the

Option Base statement by declaring its lower

bound:

Dim myArray (1 to 10)
Dim BigArray (100 to 200)

Every array has a lower bound (Lbound) and an

upper bound (Ubound). When you declare Dim myAr-

ray (2), you are declaring the upper bound and

Arrays

19

Chapter 19 Arrays454

allowing the option base to declare the lower bound. By declaring Dim myArray (1 to 10),

you declare the lower bound, 1, and the upper bound, 10

Multidimensional Arrays
The arrays just discussed are considered one-dimensional arrays because only one number

designates the location of an element of the array. The array is like a single row of data, but

because there can be only one row, you do not have to worry about the row number—only

the column number. For example, to retrieve the second element (Option Base 0), use

myArray (1).

In some cases, a single dimension is not enough. This is where multidimensional arrays

come in. Where a one-dimensional array is a single row of data, a multidimensional array

contains rows and columns.

Another word for array is matrix, which is what a spreadsheet is. The Cells object refers to elements

of a spreadsheet—and a cell consists of a row and a column. You have been using arrays all along!

N
O

T
E

To declare another dimension to an array, add another argument. The following creates an

array of 10 rows and 20 columns:

Dim myArray (1 to 10, 1 to 20)

This places values in the first two columns of the first row, as shown in Figure 19.1:

myArray (1,1) = 10
myArray (1,2) = 20

Figure 19.1
The VB Editor Watches
window shows the first
“row” of the array being
filled from the previous
lines of code.

This places values in first two columns of the second row:

myArray (2,1) = 20
myArray (2,2) = 40

And so on. Of course, this is time-consuming and can require many lines of code. Other

ways to fill an array are discussed in the next section.

455Fill an Array

Fill an Array
Now that you can declare an array, you need to fill it. One method discussed earlier is to

enter a value for each element of the array individually. However, there is a quicker way, as

shown in the following sample code and Figure 19.2:

Option Base 1

Sub ColumnHeaders()
Dim myArray As Variant ‘Variants can hold any type of data
Dim myCount As Integer

‘ Fill the variant with array data
myArray = Array(“Name”, “Address”, “Phone”, “Email”)

‘ Empty the array
With Worksheets(“Sheet2”)
 For myCount = 1 To UBound(myArray)
 .Cells(1, myCount).Value = myArray(myCount)
 Next myCount
End With
End Sub

Figure 19.2
Use an array to create col-
umn headers quickly.

Variant variables can hold any type of information. Create a Variant-type variable that can

be treated like an array. Use the Array function to shove the data into the variant, forcing

the variant to take on the properties of an array.

If the information needed in the array is on the sheet already, use the following to fill an

array quickly:

Dim myArray As Variant

myArray = Worksheets(“Sheet1”).Range(“B2:C17”)

Although these two methods are quick and straightforward, they might not always suit the

situation. For example, if you need every other row in the array, use the following code (see

Figure 19.3):

Sub EveryOtherRow()
‘there are 16 rows of data, but we are only filling every other row
‘half the table size, so our array needs only 8 rows
Dim myArray(1 To 8, 1 To 2)
Dim i As Integer, j As Integer, myCount As Integer

‘Fill the array with every other row
For i = 1 To 8
 For j = 1 To 2
‘i*2 directs the program to retrieve every other row
 myArray(i, j) = Worksheets(“Sheet1”).Cells(i * 2, j + 1).Value

Chapter 19 Arrays456

 Next j
Next i

‘Empty the array
For myCount = LBound(myArray) To UBound(myArray)
 Worksheets(“Sheet1”).Cells(myCount * 2, 4) = _
 WorksheetFunction.Sum(myArray(myCount, 1), myArray(myCount, 2))
Next myCount
End Sub

Figure 19.3
Fill the array with only
the data needed.

LBound finds the start location, the lower bound, of the array (myArray). UBound finds the end

location, the upper bound, of the array. The program can then loop through the array and

sum the information as it writes it to the sheet. How to empty an array is explained in the

following section.

Empty an Array
After an array is filled, the data needs to be retrieved. However, before you do that, you can

manipulate the data or return information about it such as the maximum integer, as shown

in the following code (see Figure 19.4):

Sub QuickFillMax()
Dim myArray As Variant

myArray = Worksheets(“Sheet1”).Range(“B2:C17”)
MsgBox “Maximum Integer is: “ & WorksheetFunction.Max(myArray)

End Sub

Figure 19.4
Return the Max variable
in an array.

457Arrays Make It Easier to Manipulate Data, but Is That All?

Data can also be manipulated as it is returned to the sheet. In the following example, Lbound

and Ubound are used with a For loop to loop through the elements of the array and average

each set. The result is placed on the sheet in a new column (see Figure 19.5).

MyCount + 1 is used to place the results back on the sheet because the Lbound is 1 and the data

starts in Row 2.

N
O

T
E

Sub QuickFillAverage()
Dim myArray As Variant
Dim myCount As Integer
‘fill the array
myArray = Worksheets(“Sheet1”).Range(“B2:C17”)

‘Average the data in the array just as it is placed on the sheet
For myCount = LBound(myArray) To UBound(myArray)
‘calculate the average and place the result in column E
 Worksheets(“Sheet1”).Cells(myCount + 1, 5).Value = _
 WorksheetFunction.Average(myArray(myCount, 1), myArray(myCount, 2))
Next myCount

End Sub

Figure 19.5
Calculations can be
done on the data as it is
returned to the sheet.

Arrays Make It Easier to Manipulate Data, but Is That All?
So far you have learned that arrays can make it easier to manipulate data and get informa-

tion from it—but is that all they are good for? No, arrays are so powerful because they can

actually make the code run faster!

Typically, when there are columns of data to average such as in the preceding example, your

first thought might be the following:

Sub SlowAverage()
Dim myCount As Integer, LastRow As Integer

Chapter 19 Arrays458

LastRow = Worksheets(“Sheet1”).Cells(Worksheets(“Sheet1”).Rows.Count, 1). _
 End(xlUp).Row

For myCount = 2 To LastRow
 With Worksheets(“Sheet1”)
 .Cells(myCount, 6).Value = _
 WorksheetFunction.Average(Cells(myCount, 2), Cells(myCount, 3))
 End With
Next myCount

End Sub

Although this works fine, the program has to look at each row of the sheet individually, get

the data, do the calculation, and then place it in the correct column. Wouldn’t it be easier

to grab all the data at one time, and then do the calculations and place it back on the sheet?

Also, with the slower version of the code, you need to know which columns on the sheet to

manipulate, which in this example are Columns 2 and 3. With an array, you need to know

only what element of the array you want to manipulate.

To make arrays even more useful, rather than use an address range to fill the array, you can

use a named range. With a named range in an array, it does not matter where on the sheet

the range is.

For example, instead of

myArray = Range(“B2:C17”)

Use this:

myArray = Range(“myData”)

With the slow method, you need to know where myData is so you can return the correct

columns. However, with an array all you need to know is that you want the first and second

columns.

You can make your array even faster! Technically, if you place a column of data into an array, it is a two-

dimensional array. If you want to process it, you must process the row and column.

However, you can process the column more quickly if it is just a single row, as long as it does not exceed

16,384 columns. To do this, use the Transpose function to turn the one column into one row (see

Figure 19.6)

Sub TransposeArray()
Dim myArray As Variant

myArray = WorksheetFunction.Transpose(Range(“myTran”))

‘return the 5th element of the array
MsgBox “The 5th element of the Array is: “ & myArray(5)
End Sub

T
IP

459Dynamic Arrays

Dynamic Arrays
You cannot always know how big of an array you will need. You could create an array based

on how big it could ever need to be, but that’s not only a waste of memory; what if it turns

out it needs to be even bigger? To avoid this problem, you can use a dynamic array.

A dynamic array is an array that does not have a set size. In other words, you declare the

array; but leave the parentheses empty:

Dim myArray ()

Later, as the program needs to use the array, Redim is used to set the size of the array. The

following program, which returns the names of all the sheets in the workbook, first creates

a boundless array, and then it sets the upper bound after it knows how many sheets are in

the workbook:

Option Base 1
Sub MySheets()
Dim myArray() As String
Dim myCount As Integer, NumShts As Integer

NumShts = ActiveWorkbook.Worksheets.Count

‘ Size the array
ReDim myArray(1 To NumShts)

For myCount = 1 To NumShts
 myArray(myCount) = ActiveWorkbook.Sheets(myCount).Name
Next myCount

End Sub

Using Redim reinitializes the array. Therefore, if you were to use it many times such as in a

loop, you would lose all the data it holds. To prevent this from happening, you need to use

Preserve. The Preserve keyword allows you to resize the last array dimension, but you can-

not use it to change the number of dimensions.

The following example looks for all the Excel files in a directory and puts the results in

an array. Because you do not know how many files there will be until you actually look at

them, you can’t size the array before the program is run:

Sub XLFiles()
Dim FName As String

Figure 19.6
Use the Transpose
function to turn a two-
dimensional array into a
one-dimensional array.

Chapter 19 Arrays460

Dim arNames() As String
Dim myCount As Integer

FName = Dir(“C:\Contracting Files\Excel VBA 2007 by Jelen & Syrstad*.xls*”)
Do Until FName = “”
 myCount = myCount + 1
 ReDim Preserve arNames(1 To myCount)
 arNames(myCount) = FName
 FName = Dir
Loop

End Sub

Using Preserve with large amounts of data in a loop can slow down the program. If possible, use

code to figure out the maximum size of the array.

C A U T I O N

Passing an Array
Just like strings, integers, and other variables, arrays can be passed into other procedures.

This makes for more efficient and easier-to-read code. The following sub, PassAnArray,

passes the array, myArray, into the function RegionSales. The data in the array is summed

for the specified region and the result returned to the sub:

Sub PassAnArray()
Dim myArray() As Variant
Dim myRegion As String

myArray = Range(“mySalesData”) ‘named range containing all the data
myRegion = InputBox(“Enter Region - Central, East, West”)
MsgBox myRegion & “ Sales are: “ & Format(RegionSales(myArray, _
 myRegion), “$#,#00.00”)

End Sub

Function RegionSales(ByRef BigArray As Variant, sRegion As String) As Long
Dim myCount As Integer

RegionSales = 0
For myCount = LBound(BigArray) To UBound(BigArray)
‘The regions are listed in column 1 of the data, hence the 1st column of the
array
 If BigArray(myCount, 1) = sRegion Then
‘The data to sum is the 6th column in the data
 RegionSales = BigArray(myCount, 6) + RegionSales
 End If
Next myCount

End Function

VBA simplifies both reading and writing from text

files. This chapter covers importing from a text file

and writing to a text file. Being able to write to a

text file proves useful when you need to write out

data for another system to read, or even when you

need to produce HTML files.

Importing from Text Files
There are two basic scenarios when reading from

text files. If the file contains fewer than 1,048,576

records, it is not difficult to import the file using

the Workbooks.OpenText method. If the file contains

more than 1,048,576 records, you have to read the

file one record at a time.

Importing Text Files with Fewer Than 1,048,576
Rows

Text files typically come in one of two formats. In

one format, the fields in each record are separated

by some delimiter such as a comma, pipe, or tab.

In the second format, each field takes a particular

number of character positions. This is called a

fixed-width file and was very popular in the days of

COBOL.

Excel can import either type of file. You can also

open both types using the OpenText method. In

both cases, it is best to record the process of open-

ing the file and use the recorded snippet of code.

Opening a Fixed-Width File

Figure 20.1 shows a text file where each field takes

up a certain amount of space in the record. Writing

the code to open this type of file is slightly arduous

because you need to specify the length of each field.

In my collection of antiques, I still have the metal

ruler used by COBOL programmers to measure the

Text File Processing

20

Chapter 20 Text File Processing464

number of characters in a field printed on a greenbar printer. In theory, you could change

the font of your file to a monospace font and use this same method. However, using the

macro recorder is a slightly more up-to-date method.

Figure 20.1
This file is fixed width.
Because you must specify
the exact length of each
field in the file, opening
this file is quite involved.

Turn on the macro recorder by selecting Record Macro from the Developer tab. From the

File menu, select Open. Change the Files of Type to All Files and find your text file.

In the Text Import Wizard’s step 1, specify that the data is Fixed Width and click Next.

Excel then looks at your data and attempts to figure out where each field begins and ends.

Figure 20.2 shows Excel’s guess on this particular file. Because the Date field is too close to

the Customer field, Excel missed drawing that line.

MisplacedMissing

Figure 20.2
Excel guesses at where
each field starts. In this
case, it missed two fields
and probably did not
leave enough room for a
longer product name.

To add a new field indicator in step 2 of the wizard, click in the appropriate place in the

Data Preview window. If you click in the wrong column, click the line and drag it to the

right place. If Excel inadvertently put in an extra field line, double-click the line to remove

it. Figure 20.3 shows the data preview after the appropriate changes have been made. Note

the little ruler above the data. When you click to add a field marker, Excel is actually han-

dling the tedious work of figuring out that the Customer field starts in position 27 for a

length of 27.

465Importing from Text Files

In step 3 of the wizard, Excel always assumes that every field is in General format.

Change the format of any fields that require special handling. Click the third column and

choose the appropriate format from the Column Data Format section of the dialog box.

Figure 20.4 shows the selections for this file.

MovedAdded

Figure 20.3
After you add a new
field marker and adjust
the marker between
Customer and Quantity
to the right place, Excel
can build the code that
gives you an idea of start
position and length of
each field.

Skip

AdvancedDate in MDY

Figure 20.4
The third column is a date
and you do not want to
import the Cost and Profit
columns.

If you have date fields, click the heading above that column, and change the column data

format choice to a date. If you have a file with dates in year-month-day format or day-

month-year format, select the drop-down next to date and choose the appropriate date

sequence.

If you prefer to skip some fields, click that column and select Do Not Import Column

(Skip) from the Column Data Format selection. There are a couple of instances when this

is useful. If the file includes sensitive data that you do not want to show to the client, you

can leave it out of the import. For example, perhaps this report is for a customer to whom

you do not want to show the cost of goods sold or profit. In this case, you can choose to

Chapter 20 Text File Processing466

skip these fields in the import. In addition, occasionally you will encounter a text file that is

both fixed width and delimited by a character such as the pipe character. Setting the 1-wide

pipe columns as “do not import” is a great way to get rid of the pipe characters, as shown in

Figure 20.5

Figure 20.5
This file is both fixed
width and pipe delimited.
Liberal use of the Do Not
Import Column setting for
each pipe column elimi-
nates the pipe characters
from the file.

If you have text fields that contain alphabetic characters, you can choose the General for-

mat. The only time you should choose the Text format is if you have a numeric field that

you explicitly need imported as text. One example of this is an account number with leading

zeros or a column of zip codes. In this case, change the field to Text format to ensure that

zip code 01234 does not lose the leading zero.

After opening the file, turn off the macro recorder and examine the recorded code:

Workbooks.OpenText Filename:=”C:\sales.prn”, Origin:=437, StartRow:=1, _
DataType:=xlFixedWidth, FieldInfo:=Array(Array(0, 1), Array(8, 1), _
Array(17, 3), Array(27, 1), Array(54, 1), Array(62, 1), Array(71, 9), _
Array(79, 9)), TrailingMinusNumbers:=True

The most confusing part of this code is the FieldInfo parameter. You are supposed to code

an array of two-element arrays. Each field in the file gets a two-element array to identify

both where the field starts and the field type.

The field start position is zero based. Because the Region field is in the first character posi-

tion, its start position is listed as zero.

The field type is a numeric code. If you were coding this by hand, you would use the

xlColumnDataType constant names; but for some reason, the macro recorder uses the

harder-to-understand numeric equivalents.

With Table 20.1, you can decode the meaning of the individual arrays in the FieldInfo

array. Array(0, 1) means that this field starts zero characters from the left edge of the file

and is a general format. Array(8, 1) indicates that the next field starts eight characters

After you import a text file and specify that one field is text, that field will exhibit seemingly bizarre

behavior. Try inserting a new row and entering a formula in the middle of a column imported as text.

Instead of getting the results of the formula, Excel enters the formula as text. The solution is to delete

the formula, format the entire column as General, and then enter the formula again.

C A U T I O N

467Importing from Text Files

from the left edge of the file and is General format. Array(17, 3) indicates that the next

field starts 17 characters from the left edge of the file and is a date format in month-day-

year sequence.

Table 20.1 xlColumnDataType Values

Value Constant Used For

1 xlGeneralFormat General

2 xlTextFormat Text

3 xlMDYFormat MDY date

4 xlDMYFormat DMY date

5 xlYMDFormat YMD date

6 xlMYDFormat MYD date

7 xlDYMFormat DYM date

8 xlYDMFormat YDM date

9 xlSkipColumn Skip Column

10 xlEMDFormat EMD date

As you can see, the FieldInfo parameter for fixed-width files is arduous to code and confus-

ing to look at. This is one situation where it is easier to record the macro and copy the code

snippet.

The xlTrailingMinusNumbers parameter was new in Excel 2002. If you have any clients who

might be using Excel 97 or Excel 2000, take the recorded parameter out. The code runs fine without

the parameter in newer versions. However, if left in, it leads to a compile error on older versions. In my

experience, this is the number one cause for code to crash on earlier versions of Excel.

C A U T I O N

Opening a Delimited File

Figure 20.6 shows a text file where each field is comma separated. The main task in open-

ing such a file is to tell Excel that the delimiter in the file is a comma and then identify any

special processing for each field. In this case, we definitely want to identify the third col-

umn as being a date in mm/dd/yyyy format.

Chapter 20 Text File Processing468

Turn on the macro recorder and record the process of opening the text file. In step 1 of the

wizard, specify that the file is delimited.

In the Text Import Wizard—step 2 of 3, the data preview may initially look horrible. This

is because Excel defaults to assuming that each field is separated by a tab character (see

Figure 20.7).

After clearing the Tab check box and selecting the proper delimiter choice, which in this

case is a comma, the data preview in step 2 looks perfect, as shown in Figure 20.8

If you try to record the process of opening a comma-delimited file where the filename ends in .csv,

Excel records the Workbooks.Open method rather than Workbooks.OpenText. If you need to

control the formatting of certain columns, rename the file to have a .txt extension before recording

the macro.

C A U T I O N

Figure 20.6
This file is comma
delimited. Opening this
file involves telling Excel
to look for a comma as
the delimiter and then
identifying any special
handling, such as treating
the third column as a
date. This is much easier
than handling fixed-
width files.

Figure 20.7
Before you import a
delimited text file, the
initial data preview looks
like a confusing mess
of data because Excel is
looking for tab characters
between each field when
a comma is actually the
delimiter in this file.

469Importing from Text Files

Step 3 of the wizard is identical to step 3 for a fixed-width file. In this case, specify that

the third column has a date format. Click Finish, and you will have this code in the macro

recorder:

Workbooks.OpenText Filename:=”C:\sales.txt”, Origin:=437, _
 StartRow:=1, DataType:=xlDelimited, TextQualifier:=xlDoubleQuote, _
 ConsecutiveDelimiter:=False, Tab:=False, Semicolon:=False, Comma:=True _
 , Space:=False, Other:=False, FieldInfo:=Array(Array(1, 1), Array(2, 1), _
 Array(3, 3), Array(4, 1), Array(5, 1), Array(6, 1), Array(7, 1), _
 Array(8, 1)), TrailingMinusNumbers:=True

Although this code appears longer, it is actually simpler. In the FieldInfo parameter, the

two element arrays consist of a sequence number, starting at 1 for the first field, and then

an xlColumnDataType from Table 20.1. In this example, Array(2, 1) is saying “the second

field is of general type.” Array(3, 3) is saying, “the third field is a date in M-D-Y format.”

The code is longer because it explicitly specifies that each possible delimiter is set to False.

Because False is the default for all delimiters, you really need only the one that you will

use. The following code is equivalent:

Workbooks.OpenText Filename:= “C:\sales.txt”, DataType:=xlDelimited,
Comma:=True, _
 FieldInfo:=Array(Array(1, 1), Array(2, 1), Array(3, 3), Array(4, 1), _
 Array(5, 1), Array(6, 1), Array(7, 1), Array(8, 1))

Finally, to make the code more readable, you can use the constant names rather than the

code numbers:

Workbooks.OpenText Filename:=”C:\sales.txt”, DataType:=xlDelimited, _
Comma:=True, _
FieldInfo:=Array(Array(1, xlGeneralFormat), Array(2, xlGeneralFormat), _
Array(3, xlMDYFormat), Array(4, xlGeneralFormat), Array(5, xlGeneralFormat), _
Array(6, xlGeneralFormat), Array(7, xlGeneralFormat), Array(8, _
xlGeneralFormat))

Figure 20.8
After changing the delim-
iter field from a tab to a
comma, the data preview
looks perfect. This is
certainly easier than the
cumbersome process in
step 2 for a fixed-width
file.

Chapter 20 Text File Processing470

Excel has built-in options to read files where fields are delimited by tabs, semicolons,

commas, or spaces. Excel can actually handle anything as a delimiter. If someone sends

pipe-delimited text, you would set the Other parameter to True and specify an OtherChar

parameter:

Workbooks.OpenText Filename:= “C:\sales.txt”, Origin:=437, _
 DataType:=xlDelimited, Other:=True, OtherChar:= “|”, FieldInfo:=...

Reading Text Files with More Than 1,048,576 Rows
If you use the Text Import Wizard to read a file with more than 1,048,576 rows of data, you

will get an error saying “File not loaded completely.” The first 1,048,576 rows of the file

will load correctly.

If you use Workbooks.OpenText to open a file with more than 1,048,576 rows of data,

you are given no indication that the file did not load completely. Excel 2010 loads the

first 1,048,576 rows and allows macro execution to continue. Your only indication there

is a problem is if someone notices that the reports are not reporting all the sales. If you

think that your files will ever get this large, it would be good to check to see whether cell

A1048576 is nonblank after an import. If it is, the odds are that the entire file was not

loaded.

Reading Text Files One Row at a Time

You might run into a text file with more than 1,048,576 rows. When this happens, the

alternative is to read the text file one row at a time. The code for doing this is the same

code you might remember in your first high school BASIC class.

You need to open the file for INPUT as #1. You can then use the Line Input #1 statement to

read a line of the file into a variable. The following code opens sales.txt, reads 10 lines of

the file into the first 10 cells of the worksheet, and closes the file:

Sub Import10()
 ThisFile = “C\sales.txt”
 Open ThisFile For Input As #1
 For i = 1 To 10
 Line Input #1, Data
 Cells(i, 1).Value = Data
 Next i
 Close #1
End Sub

Rather than read only 10 records, you will want to read until you get to the end of the file.

A variable called EOF is updated by Excel automatically. If you open a file for input as #1,

checking EOF(1) will tell you whether you have read the last record.

Use a Do...While loop to keep reading records until you have reached the end of the file:

Sub ImportAll()
 ThisFile = “C:\sales.txt”
 Open ThisFile For Input As #1

471Importing from Text Files

 Ctr = 0
 Do
 Line Input #1, Data
 Ctr = Ctr + 1
 Cells(Ctr, 1).Value = Data
 Loop While EOF(1) = False
 Close #1
End Sub

After reading records with code such as this, you will note in Figure 20.9 that the data is

not parsed into columns. All the fields are in Column A of the file.

Cell A1 contains data for eight columns.

Figure 20.9
When you are reading
a text file one row at a
time, all the data fields
end up in one long entry
in Column A.

Use the TextToColumns method to parse the records into columns. The parameters for

TextToColumns are nearly identical to the OpenText method:

Cells(1, 1).Resize(Ctr, 1).TextToColumns Destination:=Range(“A1”), _
DataType:=xlDelimited, Comma:=True, FieldInfo:=Array(Array(1, _
xlGeneralFormat), Array(2, xlMDYFormat), Array(3, xlGeneralFormat), _
Array(4, xlGeneralFormat), Array(5, xlGeneralFormat), Array(6, _
xlGeneralFormat), Array(7,xlGeneralFormat), Array(8, xlGeneralFormat), _
Array(9, xlGeneralFormat), Array(10,xlGeneralFormat), Array(11, _
xlGeneralFormat))

Rather than hard-code that you are using the #1 designator to open the text file, it is safer

to use the FreeFile function. This returns an integer representing the next file number

available for use by the Open statement. The complete code to read a text file smaller than

1,048,576 rows is as follows:

Sub ImportAll()
 ThisFile = “C:\sales.txt”
 FileNumber = FreeFile

For the remainder of your Excel session, Excel will remember the delimiter settings. There is an annoy-

ing bug (feature?) in Excel. After Excel remembers that you are using a comma or a tab as a delimiter,

any time that you attempt to paste data from the Clipboard to Excel, the data is parsed automatically

by the delimiters specified in the OpenText method. Therefore, if you attempted to paste some text

that includes the customer ABC, Inc., the text will be parsed automatically into two columns, with text

up to ABC in one column and Inc. in the next column.

C A U T I O N

Chapter 20 Text File Processing472

 Open ThisFile For Input As #FileNumber
 Ctr = 0
 Do
 Line Input #FileNumber, Data
 Ctr = Ctr + 1
 Cells(Ctr, 1).Value = Data
 Loop While EOF(FileNumber) = False
 Close #FileNumber
 Cells(1, 1).Resize(Ctr, 1).TextToColumns Destination:=Range(“A1”), _
 DataType:=xlDelimited, Comma:=True, _
 FieldInfo:=Array(Array(1, xlGeneralFormat), _
 Array(2, xlMDYFormat), Array(3, xlGeneralFormat), _
 Array(4, xlGeneralFormat), Array(5, xlGeneralFormat), _
 Array(5, xlGeneralFormat), Array(6, xlGeneralFormat), _
 Array(7, xlGeneralFormat), Array(8, xlGeneralFormat), _
 Array(9, xlGeneralFormat), Array(10, xlGeneralFormat), _
 Array(10, xlGeneralFormat), Array(11, xlGeneralFormat))
End Sub

Reading Text Files with More Than 1,048,576 Rows

You can use the Line Input method for reading a large text file. A good strategy is to read

rows into cells A1:A1048575, and then begin reading additional rows into cell AA2. You can

start in Row 2 on the second set so that the headings can be copied from Row 1 of the first

data set. If the file is large enough that it fills up Column AA, move to BA2, CA2, and so

on.

Also, you should stop writing columns when you get to Row 1048574, leaving two blank

rows at the bottom. This ensures that the code Cells(Rows.Count, 1)”””.End(xlup).Row

finds the final row. The following code reads a large text file into several sets of columns:

Sub ReadLargeFile()
 ThisFile = “C:\sales.txt”
 FileNumber = FreeFile
 Open ThisFile For Input As #FileNumber

 NextRow = 1
 NextCol = 1
 Do While Not EOF(1)
 Line Input #FileNumber, Data
 Cells(NextRow, NextCol).Value = Data
 NextRow = NextRow + 1
 If NextRow = (Rows.Count -2) Then
 ‘ Parse these records
 Range(Cells(1, NextCol), Cells(Rows.Count, NextCol)).TextToColumns _
 Destination:=Cells(1, NextCol), DataType:=xlDelimited, _
 Comma:=True, FieldInfo:=Array(Array(1, xlGeneralFormat), _
 Array(2, xlMDYFormat), Array(3, xlGeneralFormat), _
 Array(4, xlGeneralFormat), Array(5, xlGeneralFormat), _
 Array(6, xlGeneralFormat), Array(7, xlGeneralFormat), _
 Array(8, xlGeneralFormat), Array(9, xlGeneralFormat), _
 Array(10, xlGeneralFormat), Array(11, xlGeneralFormat))
 ‘ Copy the headings from section 1
 If NextCol > 1 Then
 Range(“A1:K1”).Copy Destination:=Cells(1, NextCol)

473Writing Text Files

 End If
 ‘ Set up the next section
 NextCol = NextCol + 26
 NextRow = 2
 End If
 Loop
 Close #FileNumber
 ‘ Parse the final Section of records
 FinalRow = NextRow - 1
 If FinalRow = 1 Then
 ‘ Handle if the file coincidentally had 1084574 rows exactly
 NextCol = NextCol - 26
 Else
 Range(Cells(2, NextCol), Cells(FinalRow, NextCol)).TextToColumns _
 Destination:=Cells(1, NextCol), DataType:=xlDelimited, _
 Comma:=True, FieldInfo:=Array(Array(1, xlGeneralFormat), _
 Array(2, xlMDYFormat), Array(3, xlGeneralFormat), _
 Array(4, xlGeneralFormat), Array(5, xlGeneralFormat), _
 Array(6, xlGeneralFormat), Array(7, xlGeneralFormat), _
 Array(8, xlGeneralFormat), Array(9, xlGeneralFormat), _
 Array(10, xlGeneralFormat), Array(11, xlGeneralFormat))
 If NextCol > 1 Then
 Range(“A1:K1”).Copy Destination:=Cells(1, NextCol)
 End If
 End If

 DataSets = (NextCol - 1) / 26 + 1

End Sub

Usually you should write the DataSets variable to a named cell somewhere in the workbook

so that you know how many datasets you have in the worksheet later.

As you can imagine, using this method it is possible to read 660,601,620 rows of data into

a single worksheet. The code that you formerly used to filter and report the data now

becomes more complex. You might find yourself creating pivot tables from each set of col-

umns to create a data set summary, and then finally summarizing all the summary tables

with a final pivot table. At some point, you need to consider whether the application really

belongs in Access. You can also consider whether the data should be stored in Access with

an Excel front end, which is discussed in Chapter 21, “Using Access as a Back End to

Enhance Multi-User Access to Data.”

Writing Text Files
The code for writing text files is similar to reading text files. You need to open a specific

file for output as #1. Then, as you loop through various records, you write them to the file

using the Print #1 statement.

Before you open a file for output, make sure that any prior examples of the file have been

deleted. You can use the Kill statement to delete a file. Kill returns an error if the file was

not there in the first place. In this case, you will want to use On Error Resume Next to pre-

vent an error.

Chapter 20 Text File Processing474

The following code writes out a text file for use by another application:

Sub WriteFile()
 ThisFile = “C:\Results.txt”

 ‘ Delete yesterday’s copy of the file
 On Error Resume Next
 Kill ThisFile
 On Error GoTo 0

 ‘ Open the file
 Open ThisFile For Output As #1
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
 ‘ Write out the file
 For j = 1 To FinalRow
 Print #1, Cells(j, 1).Value
 Next j
End Sub

This is a somewhat trivial example. You can use this method to write out any type of text-

based file. The code at the end of Chapter 16, “Reading from and Writing to the Web,”

uses the same concept to write out HTML files.

The example near the end of Chapter 20, “Text

File Processing,” proposed a method for storing

683 million records in an Excel worksheet. At some

point, you need to admit that even though Excel is

the greatest product in the world, there is a time to

move to Access and take advantage of the Access

Multidimensional Database (MDB) files.

Even before you have more than one million rows,

another compelling reason to use MDB data files is

to allow multiuser access to data without the head-

aches associated with shared workbooks.

Microsoft Excel offers an option to share a work-

book, but you automatically lose a number of

important Excel features when you share one. After

you share a workbook, you cannot use automatic

subtotals, pivot tables, Group and Outline mode,

scenarios, protection, Autoformat, Styles, Pictures,

Add Charts, or Insert Worksheets.

By using an Excel VBA front end and storing data

in an MDB database, you have the best of both

worlds. You have the power and flexibility of Excel

and the multiuser access capability available in

Access.

Using Access as a Back
End to Enhance Multiuser
Access to Data 21

MDB is the official file format of both Microsoft Access and Microsoft

Visual Basic. This means that you can deploy an Excel solution

that reads and writes from an MDB to customers who do not have

Microsoft Access. Of course, it helps if you as the developer have a copy

of Access because you can use the Access front end to set up tables

and queries.

N
O

T
E

Chapter 21 Using Access as a Back End to Enhance Multiuser Access to Data476

ADO Versus DAO
For several years, Microsoft recommended data access objects (DAO) for accessing data in

external database. DAO became very popular, and a great deal of code was written for it.

When Microsoft released Excel 2000, they started pushing ActiveX data objects (ADO).

The concepts are similar, and the syntax differs only slightly. I use ADO in this chapter.

Realize that if you start going through code written a decade ago, you might run into DAO

code. Other than a few syntax changes, the code for both ADO and DAO looks similar.

If you discover that you have to debug some old code using DAO, check out the Microsoft

Knowledge Base articles that you can find at the following address, which discuss the differ-

ences: http://support.microsoft.com/kb/225048.

The following two articles provide the Rosetta Stone between DAO and ADO. The ADO

code is shown at http://support.microsoft.com/kb/q146607.

The equivalent DAO code is shown at http://support.microsoft.com/kb/q142938.

To use any code in this chapter, open the VB Editor. Select Tools, References from the

main menu, and then select Microsoft ActiveX Data Objects Library from the Available

References list, as shown in Figure 21.1.

The examples in this chapter make use of the jet engine for reading from and writing to the Access

database. The jet engine works with access data stored in Access 97 through 2010. If you are sure that

all of the people running the macro will have Office 2007 or newer, you could instead use the ACE

engine.

The troubling issue is that when this book goes to press, Microsoft is not committed to releasing 64-bit

versions of either the jet or ACE ADO interface. This is perplexing because it would leave hundreds

of thousands of Access applications without a path to work in 64-bit Office. This will either prevent

people from upgrading to 64-bit Office or force people into SQL Server.

To use code in this chapter with 64-bit versions of Office, type Microsoft.Jet.OLEDB and 64-bit

into a search engine to see whether Microsoft has relented and provided a 64-bit version.

If you are running 64-bit Excel, you might have to switch over to SQL Server Express for storing this

data. See examples at the end of the chapter for adapting this code for SQL Server.

C A U T I O N

If you have Vista or newer, you will have access to version 6.0 of this library. If you will be distributing

the application to anyone who is still on Windows XP, you should choose version 2.8 instead.

T
IP

http://support.microsoft.com/kb/225048
http://support.microsoft.com/kb/q146607
http://support.microsoft.com/kb/q142938

477ADO Versus DAO

Figure 21.1
To read or write from an
Access MDB file, add the
reference for Microsoft
ActiveX Data Objects
Library or higher.

Linda and Janine are two buyers for a retail chain of stores. Each morning, they import data from the cash registers to get

current information on sales and inventory for 2,000 styles. Throughout the day, either buyer may enter transfers of inven-

tory from one store to another. It would be ideal if Linda could see the pending transfers entered by Janine and vice versa.

Each buyer has an Excel application with VBA running on her desktop. They each import the cash register data and have

VBA routines that facilitate the creation of pivot table reports to help them make buying decisions.

Attempting to store the transfer data in a common Excel file causes problems. When either buyer attempts to write to the

Excel file, the entire file becomes read-only for the other buyer. With a shared workbook, Excel turns off the capability to

create pivot tables, and this is required in their application.

Neither Linda nor Janine have the professional version of Office, so they do not have Access running on their desktop PCs.

The solution is to produce an Access database on a network drive that both Linda and Janine can see:

 1. Using Access on another PC, produce a new database called transfers.mdb and add a table called tblTrans-

fer, as shown in Figure 21.2.

C A S E S T U D Y : C R E A T I N G A S H A R E D A C C E S S D A T A B A S E

Figure 21.2
Multiple people using
their own Excel work-
books will read and write
to this table inside an
MDB file on a network
drive.

Chapter 21 Using Access as a Back End to Enhance Multiuser Access to Data478

The remainder of this chapter gives you the code necessary to allow the application

included in the previous case study to read or write data from the tblTransfer table.

The Tools of ADO
You encounter several terms when using ADO to connect to an external data source.

 ■ Recordset—When connecting to an Access database, the recordset will either be a

table in the database or a query in the database. Most of the ADO methods will refer-

ence the recordset. You might also want to create your own query on-the-fly. In this

case, you would write a SQL statement to extract only a subset of records from a table.

 ■ Connection—Defines the path to the database and the type of database. In the case of

Access databases, you specify that the connection is using the Microsoft Jet Engine.

 ■ Cursor—Think of the cursor as a pointer that keeps track of which record you are

using in the database. There are several types of cursors and two places for the cursor

to be located (described in the following bullets).

 ■ Cursor type—A dynamic cursor is the most flexible cursor. If you define a record-

set and someone else updates a row in the table while a dynamic cursor is active, the

dynamic cursor will know about the updated record. Although this is the most flexible,

it requires the most overhead. If your database doesn’t have a lot of transactions, you

might specify a static cursor—this type of cursor returns a snapshot of the data at the

time the cursor is established.

 ■ Cursor location—The cursor can be located either on the client or on the server. For

an Access database residing on your hard drive, a server location for the cursor means

that the Access Jet Engine on your computer is controlling the cursor. When you spec-

ify a client location for the cursor, your Excel session is controlling the cursor. On a

very large external dataset, it would be better to allow the server to control the cursor.

For small datasets, a client cursor is faster.

 2. Move the Transfers.mdb file to a network drive. You might find that this common folder uses different drive letter

mappings on each machine. It might be H:\Common\ on Linda’s machine and I:\Common\ on Janine’s machine.

 3. On both machines, go to the VB Editor and under Tools, References, add a reference to ActiveX Data Objects Library.

 4. In both of their applications, find an out-of-the-way cell to store the path to transfers.mdb. Name this cell TPath.

The application provides nearly seamless multiuser access to both buyers. Both Linda and Janine can read or write to the

table at the same time. The only time a conflict would occur is if they both happened to try to update the same record at

the same time.

Other than the out-of-the-way cell reference to the path to transfers.mdb, neither buyer is aware that her data is being

stored in a shared Access table, and neither computer needs to have Access installed.

479The Tools of ADO

 ■ Lock type—The point of this entire chapter is to allow multiple people to access a

dataset at the same time. The lock type defines how ADO will prevent crashes when

two people try to update the record at the same time. With an optimistic lock type,

an individual record is locked only when you attempt to update the record. If your

application will be doing 90 percent reads and only occasionally updating, then an opti-

mistic lock is perfect. However, if you know that every time you read a record you will

soon update the record, then you would use a pessimistic lock type. With pessimistic

locks, the record is locked as soon as you read it. If you know that you will never write

back to the database, you can use a read-only lock. This allows you to read the records

without preventing others from writing to the records.

The primary objects needed to access data in an MDB file are an ADO connection and an

ADO recordset.

The ADO connection defines the path to the database and specifies that the connection is

based on the Microsoft Jet Engine.

After you have established the connection to the database, you usually will use that connec-

tion to define a recordset. A recordset can be a table or a subset of records in the table or a

predefined query in the Access database. To open a recordset, you have to specify the connec-

tion and the values for the CursorType, CursorLocation, LockType, and Options parameters.

Assuming that you have only two users trying to access the table at a time, I generally use a

dynamic cursor and an optimistic lock type. For large datasets, the adUseServer value

of the CursorLocation property allows the database server to process records without

using up RAM on the client machine. If you have a small dataset, it might be faster to use

adUseClient for the CursorLocation. When the recordset is opened, all the records are

transferred to memory of the client machine. This allows faster navigation from record to

record.

Reading data from the Access database is easy. You can use the CopyFromRecordset method

to copy all selected records from the recordset to a blank area of the worksheet.

To add a record to the Access table, use the AddNew method for the recordset. You then

specify the value for each field in the table and use the Update method to commit the

changes to the database.

To delete a record from the table, you can use a pass-through query to delete records that

match a certain criteria.

If you ever find yourself frustrated with ADO and think, “If I could just open Access, I could knock out a

quick SQL statement that will do exactly what I need,” then the pass-through query is for you. Rather

than use ADO to read through the records, the pass-through query sends a request to the database to

run the SQL statement that your program builds. This effectively enables you to handle any tasks that

your database might support but that are not handled by ADO. The types of SQL statements handled by

the pass-through query are dependent on which database type you are connecting to.

N
O

T
E

Chapter 21 Using Access as a Back End to Enhance Multiuser Access to Data480

Other tools are available that let you make sure a table exists or that a particular field exists

in a table. You can also use VBA to add new fields to a table definition on-the-fly.

Adding a Record to the Database
Going back to our case study earlier in the chapter, the application we are creating has a

userform where buyers can enter transfers. To make the calls to the Access database as sim-

ple as possible, a series of utility modules handle the ADO connection to the database. This

way, the userform code can simply call AddTransfer(Style, FromStore, ToStore, Qty).

The technique for adding records after the connection is defined is as follows:

 1. Open a recordset that points to the table. In the code that follows, see the sections

commented Open the Connection, Define the Recordset, and Open the Table.

2. Use AddNew to add a new record.

3. Update each field in the new record.

4. Use Update to update the recordset.

5. Close the recordset, and then close the connection.

The following code adds a new record to the tblTransfer table:

Sub AddTransfer(Style As Variant, FromStore As Variant, _
 ToStore As Variant, Qty As Integer)
 Dim cnn As ADODB.Connection
 Dim rst As ADODB.Recordset

 MyConn = “J:\transfers.mdb”

 ‘ open the connection
 Set cnn = New ADODB.Connection
 With cnn
 .Provider = “Microsoft.Jet.OLEDB.4.0”
 .Open MyConn
 End With

 ‘ Define the Recordset
 Set rst = New ADODB.Recordset
 rst.CursorLocation = adUseServer

 ‘ open the table
 rst.Open Source:=”tblTransfer”, _
 ActiveConnection:=cnn, _
 CursorType:=adOpenDynamic, _
 LockType:=adLockOptimistic, _
 Options:=adCmdTable

 ‘ Add a record
 rst.AddNew

 ‘ Set up the values for the fields. The first four fields
 ‘ are passed from the calling userform. The date field
 ‘ is filled with the current date.

481Retrieving Records from the Database

 rst(“Style”) = Style
 rst(“FromStore”) = FromStore
 rst(“ToStore”) = ToStore
 rst(“Qty”) = Qty
 rst(“tDate”) = Date
 rst(“Sent”) = False
 rst(“Receive”) = False

 ‘ Write the values to this record
 rst.Update

 ‘ Close
 rst.Close
 cnn.Close

End Sub

Retrieving Records from the Database
Reading records from the Access database is easy. As you define the recordset, you pass a

SQL string to return the records in which you are interested.

A great way to generate the SQL is to design a query in Access that retrieves the records. While viewing

the query in Access, select SQL View from the View drop-down on the Query Tools Design tab of the

Ribbon. Access shows you the proper SQL statement required to execute that query. You can use this

SQL statement as a model for building the SQL string in your VBA code.

T
IP

After the recordset is defined, use the CopyFromRecordSet method to copy all the matching

records from Access to a specific area of the worksheet.

The following routine queries the Transfer table to find all records where the Sent flag is

not yet set to True. The results are placed on a blank worksheet. The final few lines display

the results in a userform to illustrate how to update a record in the next section:

Sub GetUnsentTransfers()
 Dim cnn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim WSOrig As Worksheet
 Dim WSTemp As Worksheet
 Dim sSQL as String
 Dim FinalRow as Long

 Set WSOrig = ActiveSheet

 ‘Build a SQL String to get all fields for unsent transfers
 sSQL = “SELECT ID, Style, FromStore, ToStore, Qty, tDate FROM tblTransfer”
 sSQL = sSQL & “ WHERE Sent=FALSE”

 ‘ Path to Transfers.mdb
 MyConn = “J:\transfers.mdb”

 Set cnn = New ADODB.Connection

Chapter 21 Using Access as a Back End to Enhance Multiuser Access to Data482

 With cnn
 .Provider = “Microsoft.Jet.OLEDB.4.0”
 .Open MyConn
 End With

 Set rst = New ADODB.Recordset
 rst.CursorLocation = adUseServer
 rst.Open Source:=sSQL, ActiveConnection:=cnn, _
 CursorType:=AdForwardOnly, LockType:=adLockOptimistic, _
 Options:=adCmdText

 ‘ Create the report in a new worksheet
 Set WSTemp = Worksheets.Add

 ‘ Add Headings
 Range(“A1:F1”).Value = Array(“ID”, “Style”, “From”, “To”, “Qty”, “Date”)

 ‘ Copy from the recordset to row 2
 Range(“A2”).CopyFromRecordset rst

 ‘ Close the connection
 rst.Close
 cnn.Close

 ‘ Format the report
 FinalRow = Range(“A65536”).End(xlUp).Row

 ‘ If there were no records, then stop
 If FinalRow = 1 Then
 Application.DisplayAlerts = False
 WSTemp.Delete
 Application.DisplayAlerts = True
 WSOrig.Activate
 MsgBox “There are no transfers to confirm”
 Exit Sub
 End If

 ‘ Format column F as a date
 Range(“F2:F” & FinalRow).NumberFormat = “m/d/y”

 ‘ Show the userform – used in next section
 frmTransConf.Show

 ‘ Delete the temporary sheet
 Application.DisplayAlerts = False
 WSTemp.Delete
 Application.DisplayAlerts = True

End Sub

483Updating an Existing Record

Updating an Existing Record
To update an existing record, you need to build a recordset with exactly one record. This

requires that the user select some sort of unique key when identifying the records. After

you have opened the recordset, use the Fields property to change the field in question and

then the Update method to commit the changes to the database.

The earlier example returned a recordset to a blank worksheet and then called a userform

frmTransConf. This form uses a simple Userform_Initialize to display the range in a large

list box. The list box’s properties have the MultiSelect property set to True:

Private Sub UserForm_Initialize()

 ‘ Determine how Records we have
 FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
 If FinalRow > 1 Then
 Me.lbXlt.RowSource = “A2:F” & FinalRow
 End If

End Sub

After the initialize procedure is run, the unconfirmed records are displayed in a list box.

The logistics planner can mark all the records that have actually been sent, as shown in

Figure 21.4.

Figure 21.3
Range(“A2”).
CopyFromRecordSet
brought matching records
from the Access database
to the worksheet.

The CopyFromRecordSet method copies records that match the SQL query to a range on

the worksheet. Note that you receive only the data rows. The headings do not come along

automatically. You must use code to write the headings to Row 1. Figure 21.3 shows the

results.

Chapter 21 Using Access as a Back End to Enhance Multiuser Access to Data484

The code attached to the Confirm button follows. Including the ID field in the fields

returned in the prior example is important if you want to narrow the information down to a

single record:

Private Sub cbConfirm_Click()
 Dim cnn As ADODB.Connection
 Dim rst As ADODB.Recordset

 ‘ If nothing is selected, warn them
 CountSelect = 0
 For x = 0 To Me.lbXlt.ListCount - 1
 If Me.lbXlt.Selected(x) Then
 CountSelect = CountSelect + 1
 End If
 Next x

 If CountSelect = 0 Then
 MsgBox “There were no transfers selected. “ & _
 “To exit without confirming any tranfers, use Cancel.”
 Exit Sub
 End If

 ‘ Establish a connection transfers.mdb
 ‘ Path to Transfers.mdb is on Menu
 MyConn = “J:\transfers.mdb”

 Set cnn = New ADODB.Connection

 With cnn
 .Provider = “Microsoft.Jet.OLEDB.4.0”
 .Open MyConn
 End With

Figure 21.4
This userform displays
particular records from
the Access recordset.
When the buyer selects
certain records and then
chooses the Confirm
button, you’ll have to use
ADO’s Update method
to update the Sent field
on the selected records.

485Summarizing Records via ADO

 ‘ Mark as complete
 For x = 0 To Me.lbXlt.ListCount - 1
 If Me.lbXlt.Selected(x) Then
 ThisID = Cells(2 + x, 1).Value
 ‘ Mark ThisID as complete
 ‘Build SQL String
 sSQL = “SELECT * FROM tblTransfer Where ID=” & ThisID
 Set rst = New ADODB.Recordset
 With rst
 .Open Source:=sSQL, ActiveConnection:=cnn, _
 CursorType:=adOpenKeyset, LockType:=adLockOptimistic
 ‘ Update the field
 .Fields(“Sent”).Value = True
 .Update
 .Close
 End With
 End If
 Next x

 ‘ Close the connection
 cnn.Close
 Set rst = Nothing
 Set cnn = Nothing

 ‘ Close the userform
 Unload Me

End Sub

Deleting Records via ADO
Like updating a record, the key to deleting records is being able to write a bit of SQL to

uniquely identify the records to be deleted. The following code uses the Execute method to

pass the Delete command through to Access:

Public Sub ADOWipeOutAttribute(RecID)
 ‘ Establish a connection transfers.mdb
 MyConn = “J:\transfers.mdb”

 With New ADODB.Connection
 .Provider = “Microsoft.Jet.OLEDB.4.0”
 .Open MyConn
 .Execute “Delete From tblTransfer Where ID = “ & RecID
 .Close
 End With
End Sub

Summarizing Records via ADO
One of Access’s strengths is running summary queries that group by a particular field. If

you build a summary query in Access and examine the SQL view, you will see that complex

queries can be written. Similar SQL can be built in Excel VBA and passed to Access via

ADO.

Chapter 21 Using Access as a Back End to Enhance Multiuser Access to Data486

The following code uses a fairly complex query to get a net total by store:

Sub NetTransfers(Style As Variant)
 ‘ This builds a table of net open transfers
 ‘ on Styles AI1
 Dim cnn As ADODB.Connection
 Dim rst As ADODB.Recordset

 ‘ Build the large SQL query
 ‘ Basic Logic: Get all open Incoming Transfers by store,
 ‘ union with -1* outgoing transfers by store
 ‘ Sum that union by store, and give us min date as well
 ‘ A single call to this macro will replace 60 _
 ‘ calls to GetTransferIn, GetTransferOut, TransferAge
 sSQL = “Select Store, Sum(Quantity), Min(mDate) From “ & _
 “(SELECT ToStore AS Store, Sum(Qty) AS Quantity, “ & _
 “Min(TDate) AS mDate FROM tblTransfer where Style=’” & Style “ & _
 “& “’ AND Receive=FALSE GROUP BY ToStore “
 sSQL = sSQL & “ Union All SELECT FromStore AS Store, “ & _
 “Sum(-1*Qty) AS Quantity, Min(TDate) AS mDate “ & _
 “FROM tblTransfer where Style=’” & Style & “’ AND “ & _
 “Sent=FALSE GROUP BY FromStore)”
 sSQL = sSQL & “ Group by Store”

 MyConn = “J:\transfers.mdb”

 ‘ open the connection.
 Set cnn = New ADODB.Connection
 With cnn
 .Provider = “Microsoft.Jet.OLEDB.4.0”
 .Open MyConn
 End With

 Set rst = New ADODB.Recordset

 rst.CursorLocation = adUseServer

 ‘ open the first query
 rst.Open Source:=sSQL, _
 ActiveConnection:=cnn, _
 CursorType:=AdForwardOnly, _
 LockType:=adLockOptimistic, _
 Options:=adCmdText

 Range(“A1:C1”).Value = Array(“Store”, “Qty”, “Date”)
 ‘ Return Query Results
 Range(“A2”).CopyFromRecordset rst
 rst.Close
 cnn.Close

End Sub

487Other Utilities via ADO

Other Utilities via ADO
Consider the application we created for our case study; the buyers now have an Access data-

base located on their network but possibly no copy of Access. It would be ideal if you could

deliver changes to the Access database on-the-fly as their application opens.

If you are wondering how you would ever coax the person using the application to run these queries,

consider using an Update macro hidden in the Workbook_Open routine of the client application.

Such a routine might first check to see whether a field does not exist and then add the field.

T
IP

 For details on the mechanics of hiding the update query in the Workbook_Open routine, see the “Using a Hidden Code Workbook
to Hold All Macros and Forms” case study, p. 594.

Checking for the Existence of Tables
If the application needs a new table in the database, you can use the code in the next sec-

tion. However, because we have a multiuser application, only the first person who opens the

application has to add the table on-the-fly. When the next buyer shows up, the table may

have already been added by the first buyer’s application.

This code uses the OpenSchema method to actually query the database schema:

Function TableExists(WhichTable)
 Dim cnn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim fld As ADODB.Field
 TableExists = False

 ‘ Path to Transfers.mdb is on Menu
 MyConn = “J:\transfers.mdb”

 Set cnn = New ADODB.Connection

 With cnn
 .Provider = “Microsoft.Jet.OLEDB.4.0”
 .Open MyConn
 End With

 Set rst = cnn.OpenSchema(adSchemaTables)

 Do Until rst.EOF
 If LCase(rst!Table_Name) = LCase(WhichTable) Then
 TableExists = True
 GoTo ExitMe
 End If
 rst.MoveNext
 Loop

Chapter 21 Using Access as a Back End to Enhance Multiuser Access to Data488

ExitMe:
 rst.Close
 Set rst = Nothing
 ‘ Close the connection
 cnn.Close

End Function

Checking for the Existence of a Field
Sometimes you will want to add a new field to an existing table. Again, this code uses the

OpenSchema method but this time looks at the columns in the tables:

Function ColumnExists(WhichColumn, WhichTable)
 Dim cnn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim WSOrig As Worksheet
 Dim WSTemp As Worksheet
 Dim fld As ADODB.Field
 ColumnExists = False

 ‘ Path to Transfers.mdb is on menu
 MyConn = ActiveWorkbook.Worksheets(“Menu”).Range(“TPath”).Value
 If Right(MyConn, 1) = “\” Then
 MyConn = MyConn & “transfers.mdb”
 Else
 MyConn = MyConn & “\transfers.mdb”
 End If

 Set cnn = New ADODB.Connection

 With cnn
 .Provider = “Microsoft.Jet.OLEDB.4.0”
 .Open MyConn
 End With

 Set rst = cnn.OpenSchema(adSchemaColumns)

 Do Until rst.EOF
 If LCase(rst!Column_Name) = LCase(WhichColumn) And _
 LCase(rst!Table_Name) = LCase(WhichTable) Then
 ColumnExists = True
 GoTo ExitMe
 End If
 rst.MoveNext
 Loop

ExitMe:
 rst.Close
 Set rst = Nothing
 ‘ Close the connection
 cnn.Close

End Function

489Other Utilities via ADO

Adding a Table On the Fly
This code uses a pass-through query to tell Access to run a Create Table command:

Sub ADOCreateReplenish()
 ‘ This creates tblReplenish
 ‘ There are five fields:
 ‘ Style
 ‘ A = Auto replenishment for A
 ‘ B = Auto replenishment level for B stores
 ‘ C = Auto replenishment level for C stores
 ‘ RecActive = Yes/No field
 Dim cnn As ADODB.Connection
 Dim cmd As ADODB.Command

 ‘ Define the connection
 MyConn = “J:\transfers.mdb”

 ‘ open the connection
 Set cnn = New ADODB.Connection
 With cnn
 .Provider = “Microsoft.Jet.OLEDB.4.0”
 .Open MyConn
 End With

 Set cmd = New ADODB.Command
 Set cmd.ActiveConnection = cnn
 ‘create table
 cmd.CommandText = “CREATE TABLE tblReplenish “ & _
 “(Style Char(10) Primary Key, “ & _
 “A int, B int, C Int, RecActive YesNo)”
 cmd.Execute , , adCmdText
 Set cmd = Nothing
 Set cnn = Nothing
 Exit Sub
End Sub

Adding a Field On the Fly
If you determine that a field does not exist, you can use a pass-through query to add a field

to the table:

Sub ADOAddField()
 ‘ This adds a grp field to tblReplenish
 Dim cnn As ADODB.Connection
 Dim cmd As ADODB.Command

 ‘ Define the connection
 MyConn = “J:\transfers.mdb”

 ‘ open the connection
 Set cnn = New ADODB.Connection
 With cnn
 .Provider = “Microsoft.Jet.OLEDB.4.0”

Chapter 21 Using Access as a Back End to Enhance Multiuser Access to Data490

 .Open MyConn
 End With

 Set cmd = New ADODB.Command
 Set cmd.ActiveConnection = cnn
 ‘create table
 cmd.CommandText = “ALTER TABLE tblReplenish Add Column Grp Char(25)”
 cmd.Execute , , adCmdText
 Set cmd = Nothing
 Set cnn = Nothing

End Sub

SQL Server Examples
If you have 64-bit versions of Office and if Microsoft does not provide the 64-bit Microsoft.

Jet.OLEDB.4.0 drivers, you will have to switch over to using SQL Server or another data-

base technology:

Sub DataExtract()

Application.DisplayAlerts = False

‘clear out all previous data
Sheet1.Cells.Clear

‘ Create a connection object.
Dim cnPubs As ADODB.Connection
Set cnPubs = New ADODB.Connection

‘ Provide the connection string.
Dim strConn As String

‘Use the SQL Server OLE DB Provider.
strConn = “PROVIDER=SQLOLEDB;”

‘Connect to the Pubs database on the local server.
strConn = strConn & “DATA SOURCE=a_sql_server;INITIAL CATALOG=a_database;”

‘Use an integrated login.
strConn = strConn & “ INTEGRATED SECURITY=sspi;”

‘Now open the connection.
cnPubs.Open strConn

‘ Create a recordset object.
Dim rsPubs As ADODB.Recordset
Set rsPubs = New ADODB.Recordset

With rsPubs
 ‘ Assign the Connection object.
 .ActiveConnection = cnPubs

491Next Steps

 ‘ Extract the required records.
 .Open “exec a_database..a_stored_procedure”
 ‘ Copy the records into cell A1 on Sheet1.
 Sheet1.Range(“A2”).CopyFromRecordset rsPubs

Dim myColumn As Range
‘Dim title_string As String
Dim K As Integer
For K = 0 To rsPubs.Fields.Count - 1
 ‘Sheet1.Columns(K).Value = rsPubs.Fields(K).Name
 ‘title_string = title_string & rsPubs.Fields(K).Name & Chr(9)
 ‘Sheet1.Columns(K).Cells(1).Name = rsPubs.Fields(K).Name
 ‘Sheet1.Columns.Column(K) = rsPubs.Fields(K).Name
 ‘Set myColumn = Sheet1.Columns(K)
 ‘myColumn.Cells(1, K).Value = rsPubs.Fields(K).Name
 ‘Sheet1.Cells(1, K) = rsPubs.Fields(K).Name
 Sheet1.Cells(1, K + 1) = rsPubs.Fields(K).Name
 Sheet1.Cells(1, K + 1).Font.Bold = “TRUE”
Next K
‘Sheet1.Range(“A1”).Value = title_string

 ‘ Tidy up
 .Close
End With

cnPubs.Close
Set rsPubs = Nothing
Set cnPubs = Nothing

‘clear out errors
Dim cellval As Range
Dim myRng As Range
Set myRng = ActiveSheet.UsedRange
For Each cellval In myRng
 cellval.Value = cellval.Value
 ‘cellval.NumberFormat = “@” ‘this works as well as setting
 ‘HorizontalAlignment
 cellval.HorizontalAlignment = xlRight
Next

End Sub

Excel already has many objects available, but there

are times when a custom object would be better

suited for the job at hand. You can create custom

objects that you use in the same way as Excel’s

built-in objects. These special objects are created in

class modules.

Class modules are used to create custom objects

with custom properties and methods. They can trap

application events, embedded chart events, ActiveX

control events, and more.

Inserting a Class Module
From the VB Editor, select Insert, Class Module.

A new module, Class1, is added to the VBAProject

workbook and can be seen in the Project Explorer

window (see Figure 22.1). Two things to keep in

mind concerning class modules:

 ■ Each custom object must have its own module.

(Event trapping can share a module.)

 ■ The class module should be renamed to reflect

the custom object.

Creating Classes, Records,
and Collections

22

Figure 22.1
Custom objects are cre-
ated in class modules.

Chapter 22 Creating Classes, Records, and Collections494

Trapping Application and Embedded Chart Events
Chapter 9, “Event Programming,” showed you how certain actions in workbooks, work-

sheets, and nonembedded charts could be trapped and used to activate code. Briefly, it

reviewed how to set up a class module to trap application and chart events. The following

goes into more detail about what was shown in that chapter.

Application Events
The Workbook_BeforePrint event is triggered when the workbook in which it resides is

printed. If you want to run the same code in every workbook available, you have to copy

the code to each workbook. Alternatively, you can use an application event, Workbook_

BeforePrint, which is triggered when any workbook is printed.

The application events already exist, but a class module must be set up first so that they can

be seen. To create a class module, follow these steps:

 1. Insert a class module into the project. Rename it to something that will make sense to

you such as clsAppEvents. Select View, Properties Window to rename a module.

 2. Enter the following into the class module:

Public WithEvents xlApp As Application

The name of the variable, xlApp, can be any variable name. The WithEvents keyword

exposes the events associated with the Application object.

 3. xlApp is now available from that class module’s Object drop-down list. Select it from

the drop-down, and then click the Procedure drop-down menu to its right to view the

list of events that is available for the xlApp’s object type (Application), as shown in

Figure 22.2.

For a review of the various application events, see the “Application-Level Events” section, p. 176.

Any of the events listed can by captured, just as workbook and worksheet events were cap-

tured in an earlier chapter. The following example uses the NewWorkbook event to set up

footer information automatically. This code is placed in the class module, below the xlApp

declaration line you just added:

Figure 22.2
Events are made available
after the object is created.

495Trapping Application and Embedded Chart Events

Private Sub xlApp_NewWorkbook(ByVal Wb As Workbook)
Dim wks As Worksheet

With Wb
 For Each wks In .Worksheets
 wks.PageSetup.LeftFooter = “Created by: “ & .Application.UserName
 wks.PageSetup.RightFooter = Now
 Next wks
End With

End Sub

The procedure placed in a class module does not run automatically as events in workbook

or worksheet modules would. An instance of the class module must be created and the

Application object assigned to the xlApp property. After that is complete, the TrapAppEvent

procedure needs to run. As long as the procedure is running, the footer will be created on

each sheet every time a new workbook is added. Place the following in a standard module:

Public myAppEvent As New clsAppEvents

Sub TrapAppEvent()

Set myAppEvent.xlApp = Application

End Sub

The application event trapping can be terminated by any action that resets the module level or public

variables including editing code in the VB Editor. To restart, run the procedure that creates the object

(TrapAppEvent).

C A U T I O N

In this example, the public myAppEvent declaration was placed in a standard module with

the TrapAppEvent procedure. To automate the running of the entire event trapping, all

the modules could be transferred to the Personal.xlsb and the procedure transferred to a

Workbook_Open event. In any case, the Public declaration of myAppEvent must remain in a

standard module so it can be shared between modules.

Embedded Chart Events
Preparing to trap embedded chart events is the same as preparing for trapping application

events. Create a class module, insert the public declaration for a chart type, create a proce-

dure for the desired event, and then add a standard module procedure to initiate the trap-

ping. The same class module used for the application event can be used for the embedded

chart event.

Chapter 22 Creating Classes, Records, and Collections496

Place the following line in the declaration section of the class module. The available chart

events are now viewable (see Figure 22.3):

Public WithEvents xlChart As Chart

For a review of the various charts events, see “Chart Sheet Events” on p. 172.

Figure 22.3
The chart events are
available after the chart
type variable has been
declared.

Let’s create a program to change the chart scale. Three events are set up. The pri-

mary event, MouseDown, changes the chart scale with a right-click or double-click.

Because these actions also have actions associated with them, you need two more events:

BeforeRightClick and BeforeDoubleClick, which prevent the usual action from taking

place.

The following BeforeDoubleClick event prevents the normal result of a double-click from

taking place:

Private Sub xlChart_BeforeDoubleClick(ByVal ElementID As Long, _
 ByVal Arg1 As Long, ByVal Arg2 As Long, Cancel As Boolean)
Cancel = True
End Sub

The following BeforeRightClick event prevents the normal result of a right-click from tak-

ing place:

Private Sub xlChart_BeforeRightClick(Cancel As Boolean)
Cancel = True
End Sub

Now that the normal actions of the double-click and right-click have been controlled,

ChartMouseDown rewrites the actions initiated by a right-click and double-click:

Private Sub xlChart_MouseDown(ByVal Button As Long, ByVal Shift As Long, _
 ByVal x As Long, ByVal y As Long)
 If Button = 1 Then ‘left mouse button
 xlChart.Axes(xlValue).MaximumScale = _
 xlChart.Axes(xlValue).MaximumScale - 50
 End If

 If Button = 2 Then ‘right mouse button
 xlChart.Axes(xlValue).MaximumScale = _
 xlChart.Axes(xlValue).MaximumScale + 50
 End If

End Sub

497Creating a Custom Object

After the events are set in the class module, all that is left to do is declare the variable in a

standard module, as follows:

Public myChartEvent As New clsEvents

Then create a procedure that will capture the events on the embedded chart:

Sub TrapChartEvent()

Set myChartEvent.xlChart = Worksheets(“EmbedChart”). _
 ChartObjects(“Chart 2”).Chart

End Sub

Creating a Custom Object
Class modules are useful for trapping events, but they are also valuable because they can

be used to create custom objects. When you are creating a custom object, the class module

becomes a template of the object’s properties and methods. To understand this better, in the

following example you create an employee object to track employee name, ID, hourly wage

rate, and hours worked.

Insert a class module and rename it to clsEmployee. The clsEmployee object has four prop-

erties:

■ EmpName—Employee name

■ EmpID—Employee ID

■ EmpRate—Hourly wage rate

■ EmpWeeklyHrs—Hours worked

Properties are variables that can be declared Private or Public. If declared Private, the prop-

erties are only accessible within the module they are declared in.These properties need to

be accessible to the standard module, so they will be declared Public. Place the following

lines at the top of the class module:

Public EmpName As String
Public EmpID As String
Public EmpRate As Double
Public EmpWeeklyHrs As Double

The BeforeDoubleClick and BeforeRightClick events are only triggered when the user

clicks the plot area itself. The area around the plot area does not trigger the events. However, the

MouseDown event is triggered from anywhere on the chart.

N
O

T
E

Chapter 22 Creating Classes, Records, and Collections498

Methods are actions that the object can take. In the class module, these actions take shape

as procedures and functions. The following code creates a method, EmpWeeklyPay(), for the

object that calculates weekly pay:

Public Function EmpWeeklyPay() As Double
EmpWeeklyPay = EmpRate * EmpWeeklyHrs
End Function

The object is now complete. It has four properties and one method. The next step is using

the object in an actual program.

Using a Custom Object
After a custom object is properly configured in a class module, it can be referenced from

another module. Declare a variable as the custom object type in the declarations section:

Dim Employee As clsEmployee

In the procedure, set the variable to be a New object:

Set Employee = New clsEmployee

Continue entering the rest of the procedure. As you refer to the properties and method

of the custom object, a screen tip appears, just as with Excel’s standard objects (see Figure

22.4).

Figure 22.4
The properties and
method of the custom
object are just as easily
accessible as they are for
standard objects.

Option Explicit

Dim Employee As clsEmployee

Sub EmpPay()

Set Employee = New clsEmployee

With Employee
 .EmpName = “Tracy Syrstad”
 .EmpID = “1651”
 .EmpRate = 25
 .EmpWeeklyHrs = 40

499Using Property Let and Property Get to Control How Users Utilize Custom Objects

 MsgBox .EmpName & “ earns $” & .EmpWeeklyPay & “ per week.”
End With

End Sub

The procedure declares an object Employee as a new instance of clsEmployee. It then assigns

values to the four properties of the object and generates a message box displaying the

employee name and weekly pay (see Figure 22.5). The object’s method, EmpWeeklyPay, is

used to generate the displayed pay.

Figure 22.5
Create custom objects to
make code more efficient.

Using Property Let and Property Get to Control How
Users Utilize Custom Objects

As declared in the earlier example, public variables have read/write properties. When they

are used in a program, the values of the variables can be retrieved or changed. To assign

read/write limitations, use Property Let and Property Get procedures.

Property Let procedures give you control of how properties can be assigned values.

Property Get procedures give you control of how the properties are accessed. In the cus-

tom object example, there is a public variable for weekly hours. This variable is used in a

method for calculating pay for the week but doesn’t consider overtime pay. Variables for

normal hours and overtime hours are needed, but the variables must be read-only.

To accomplish this, the class module must be reconstructed. It needs two new properties,

EmpNormalHrs and EmpOverTimeHrs. However, because these two properties are to be con-

fined to read-only, they are not declared as variables. Property Get procedures are used to

create them.

If EmpNormalHrs and EmpOverTimeHrs are going to be read-only, they must have val-

ues assigned somehow. Their values are a calculation of the EmpWeeklyHrs. Because

EmpWeeklyHrs will be used to set the property values of these two object properties, it can

no longer be a public variable. There are two private variables, NormalHrs and OverHrs,

which are used within the confines of the class module:

Public EmpName As String
Public EmpID As String
Public EmpRate As Double

Private NormalHrs As Double
Private OverHrs As Double

Chapter 22 Creating Classes, Records, and Collections500

A Property Let procedure is created for EmpWeeklyHrs to break the hours down into normal

and overtime hours:

Property Let EmpWeeklyHrs(Hrs As Double)

NormalHrs = WorksheetFunction.Min(40, Hrs)
OverHrs = WorksheetFunction.Max(0, Hrs - 40)

End Property

The Property Get EmpWeeklyHrs totals these hours and returns a value to this property.

Without it, a value cannot be retrieved from EmpWeeklyHrs:

Property Get EmpWeeklyHrs() As Double

EmpWeeklyHrs = NormalHrs + OverHrs

End Property

Property Get procedures are created for EmpNormalHrs and EmpOverTimeHrs to set their val-

ues. If you use Property Get procedures only, the values of these two properties are read-

only. They can be assigned values only through the EmpWeeklyHrs property:

Property Get EmpNormalHrs() As Double

EmpNormalHrs = NormalHrs

End Property

Property Get EmpOverTimeHrs() As Double

EmpOverTimeHrs = OverHrs

End Property

Finally, the method EmpWeeklyPay is updated to reflect the changes in the properties and

goal:

Public Function EmpWeeklyPay() As Double

EmpWeeklyPay = (EmpNormalHrs * EmpRate) + (EmpOverTimeHrs * EmpRate * 1.5)

End Function

Update the procedure in the standard module to take advantage of the changes in the class

module. Figure 22.6 shows the new message box resulting from this updated procedure:

Sub EmpPayOverTime()
Dim Employee As New clsEmployee

With Employee
 .EmpName = “Tracy Syrstad”
 .EmpID = “1651”
 .EmpRate = 25
 .EmpWeeklyHrs = 45

501Collections

 MsgBox .EmpName & Chr(10) & Chr(9) & _
 “Normal Hours: “ & .EmpNormalHrs & Chr(10) & Chr(9) & _
 “OverTime Hours: “ & .EmpOverTimeHrs & Chr(10) & Chr(9) & _
 “Weekly Pay : $” & .EmpWeeklyPay
End With

End Sub

Figure 22.6
Use Property Let
and Property Get
procedures for more con-
trol over custom object
properties.

Collections
Up to now, you have been able to have only one record at a time of the custom object. To

create more, a collection that allows more than a single record to exist at a time is needed.

For example, Worksheet is a member of the Worksheets collection. You can add, remove,

count, and refer to each worksheet in a workbook by item. This functionality is also avail-

able to your custom object.

Creating a Collection in a Standard Module
The quickest way to create a collection is to use the built-in Collection method. By setting

up a collection in a standard module, you can access the four default collection methods:

Add, Remove, Count, and Item.

The following example reads a list of employees off a sheet and into an array. It then pro-

cesses the array, supplying each property of the object with a value, and places each record

in the collection:

Sub EmpPayCollection()
Dim colEmployees As New Collection
Dim recEmployee As New clsEmployee
Dim LastRow As Integer, myCount As Integer
Dim EmpArray As Variant

LastRow = ActiveSheet.Cells(ActiveSheet.Rows.Count, 1).End(xlUp).Row
EmpArray = ActiveSheet.Range(Cells(1, 1), Cells(LastRow, 4))

For myCount = 1 To UBound(EmpArray)
 Set recEmployee = New clsEmployee
 With recEmployee
 .EmpName = EmpArray(myCount, 1)
 .EmpID = EmpArray(myCount, 2)
 .EmpRate = EmpArray(myCount, 3)

Chapter 22 Creating Classes, Records, and Collections502

 .EmpWeeklyHrs = EmpArray(myCount, 4)
 colEmployees.Add recEmployee, .EmpID
 End With
Next myCount

MsgBox “Number of Employees: “ & colEmployees.Count & Chr(10) & _
 “Employee(2) Name: “ & colEmployees(2).EmpName
MsgBox “Tracy’s Weekly Pay: $” & colEmployees(“1651”).EmpWeeklyPay

Set recEmployee = Nothing

End Sub

The collection, colEmployees, is declared as a new collection and the record, recEmployee,

as a new variable of the custom object type.

After the object’s properties are given values, the record, recEmployee, is added to the

collection. The second parameter of the Add method applies a unique key to the record,

which, in this case, is the employee ID number. This allows a specific record to be accessed

quickly, as shown by the second message box (colEmployees(“1651”).EmpWeeklyPay) (see

Figure 22.7).

Figure 22.7
Individual records in a
collection can be easily
accessed.

Creating a Collection in a Class Module
Collections can be created in a class module. In this case, the innate methods of the collec-

tion (Add, Remove, Count, Item) are not available; they need to be created in the class module.

The advantages of creating a collection in a class module are

■ The entire code is in one module.

■ You have more control over what is done with the collection.

■ You can prevent access to the collection.

The unique key is an optional parameter. An error message appears if a duplicate key is entered.

N
O

T
E

503Collections

Insert a new class module for the collection and rename it clsEmployees. Declare a private

collection to be used within the class module:

Option Explicit
Private AllEmployees As New Collection

Add the new properties and methods required to make the collection work. The innate

methods of the collection are available within the class module and can be used to create

the custom methods and properties:

Insert an Add method for adding new items to the collection:

Public Sub Add(recEmployee As clsEmployee)

AllEmployees.Add recEmployee, recEmployee.EmpID

End Sub

Insert a Count property to return the number of items in the collection:

Public Property Get Count() As Long

Count = AllEmployees.Count

End Property

Insert an Items property to return the entire collection:

Public Property Get Items() As Collection

Set Items = AllEmployees

End Property

Insert an Item property to return a specific item from the collection:

Public Property Get Item(myItem As Variant) As clsEmployee

Set Item = AllEmployees(myItem)

End Property

Insert a Remove property to remove a specific item from the collection:

Public Sub Remove(myItem As Variant)

AllEmployees.Remove (myItem)

End Sub

Property Get is used with Count, Item, and Items because these are read-only properties.

Item returns a reference to a single member of the collection, whereas Items returns the

entire collection so it can be used in For Each Next loops.

Chapter 22 Creating Classes, Records, and Collections504

After the collection is configured in the class module, a procedure can be written in a stan-

dard module to use it:

Sub EmpAddCollection()
Dim colEmployees As New clsEmployees
Dim recEmployee As New clsEmployee
Dim LastRow As Integer, myCount As Integer
Dim EmpArray As Variant

LastRow = ActiveSheet.Cells(ActiveSheet.Rows.Count, 1).End(xlUp).Row
EmpArray = ActiveSheet.Range(Cells(1, 1), Cells(LastRow, 4))

For myCount = 1 To UBound(EmpArray)
 Set recEmployee = New clsEmployee
 With recEmployee
 .EmpName = EmpArray(myCount, 1)
 .EmpID = EmpArray(myCount, 2)
 .EmpRate = EmpArray(myCount, 3)
 .EmpWeeklyHrs = EmpArray(myCount, 4)
 colEmployees.Add recEmployee
 End With
Next myCount

MsgBox “Number of Employees: “ & colEmployees.Count & Chr(10) & _
 “Employee(2) Name: “ & colEmployees.Item(2).EmpName
MsgBox “Tracy’s Weekly Pay: $” & colEmployees.Item(“1651”).EmpWeeklyPay

For Each recEmployee In colEmployees.Items
 recEmployee.EmpRate = recEmployee.EmpRate * 1.5
Next recEmployee

MsgBox “Tracy’s Weekly Pay (after Bonus): $” & colEmployees.Item(“1651”). _
 EmpWeeklyPay

Set recEmployee = Nothing

End Sub

This program is not that different from the one used with the standard collection, but there

are a few key differences.

 ■ Instead of declaring colEmployees as Collection, declare it as type clsEmployees, the

new class module collection.

 ■ The array and collection are filled the same way, but the way the records in the collec-

tion are referenced has changed.When referencing a member of the collection, such as

employee record 2, the Item property must be used.

Compare the syntax of the message boxes in this program to the previous program. The

For Each Next loop goes through each record in the collection and multiplies the EmpRate

by 1.5, changing its value. The result of this “bonus” is shown in a message box similar to

the one shown previously in Figure 22.7.

505Collections

You have a complex sheet that requires a way for the user to get help. You can place the information in comment boxes,

but they are not very obvious, especially to the novice Excel user. Another option is to create help buttons.

To do this, create small labels with a question mark in each one on the worksheet. To get the button-like appearance

shown in Figure 22.8, set the SpecialEffect property of the labels to Raised and darken the BackColor. Place

one label per row. Two columns over from the button, enter the help text you want to appear when the label is clicked.

Hide this help text column.

Create a simple userform with a label and a Close button. Rename the form HelpForm, the button CloseHelp, and

the label HelpText. Size the label large enough to hold the help text. Add a macro behind the form to hide it when the

button is clicked. At this point, you could program each button separately. If you have many buttons, this would be tedious.

If you ever need to add more buttons, you also will have to update the code. Or you could create a class module and a col-

lection that will automatically include all the help buttons on the sheet, now and in the future.

Private Sub CloseHelp_Click()
Unload Me
End Sub

Insert a class module named clsLabel. You will need a variable, Lbl, to capture the control events:

Public WithEvents Lbl As MSForms.Label

In addition, you need a method of finding and displaying the corresponding help text:

Private Sub Lbl_Click()
Dim Rng As Range

Set Rng = Lbl.TopLeftCell

If Lbl.Caption = “?” Then
 HelpForm.Caption = “Label in cell “ & Rng.Address(0, 0)
 HelpForm.HelpText.Caption = Rng.Offset(, 2).Value
 HelpForm.Show
End If

End Sub

C A S E S T U D Y : H E L P B U T T O N S

Figure 22.8
Attach help buttons to
the sheet and enter help
text.

Chapter 22 Creating Classes, Records, and Collections506

In the ThisWorkbook module, create a Workbook_Open procedure to create a collection of the labels in the workbook:

Option Explicit
Option Base 1
Dim col As Collection
Sub Workbook_Open()
Dim WS As Worksheet
Dim cLbl As clsLabel
Dim OleObj As OLEObject

Set col = New Collection

For Each WS In ThisWorkbook.Worksheets
 For Each OleObj In WS.OLEObjects
 If OleObj.OLEType = xlOLEControl Then
‘in case you have other controls on the sheet, include only the labels
 If TypeName(OleObj.Object) = “Label” Then
 Set cLbl = New clsLabel
 Set cLbl.Lbl = OleObj.Object
 col.Add cLbl
 End If
 End If
 Next OleObj
Next WS

End Sub

Run Workbook_Open to create the collection. Click a label on the worksheet. The corresponding help text appears in the

help form, as shown in Figure 22.9.

Figure 22.9
Help text is only a click
away.

User-Defined Types
User-defined types (UDTs) provide some of the power of a custom object, but without the

need of a class module. A class module allows the creation of custom properties and meth-

ods, while a UDT allows only custom properties. However, sometimes that is all you need.

A UDT is declared with a Type..End Type statement. It can be Public or Private. A name

that is treated like an object is given to the UDT. Within the Type, individual variables are

declared that become the properties of the UDT.

507User-Defined Types

Within an actual procedure, a variable is defined of the custom type. When that variable is

used, the properties are available, just as they are in a custom object (see Figure 22.10).

The following example uses two UDTs to summarize a report of product styles in various

stores. The first UDT consists of properties for each product style:

Option Explicit
Public Type Style
 StyleName As String
 Price As Single
 UnitsSold As Long
 UnitsOnHand As Long
End Type

The second UDT consists of the store name and an array whose type is the first UDT:

Public Type Store
 Name As String
 Styles() As Style
End Type

After the UDTs are established, the main program is written. Only a variable of the second

UDT type, Store, is needed because that type contains the first type, Style (see Figure

22.11). However, all the properties of the UDTs are easily available. In addition, with the

use of the UDT, the various variables are easy to remember—they are only a dot (.) away:

Sub Main()
Dim FinalRow As Integer, ThisRow As Integer, ThisStore As Integer
Dim CurrRow As Integer, TotalDollarsSold As Integer, TotalUnitsSold As Integer
Dim TotalDollarsOnHand As Integer, TotalUnitsOnHand As Integer
Dim ThisStyle As Integer
Dim StoreName As String

Figure 22.10
The properties of a UDT
are available as they are
in a custom object.

Chapter 22 Creating Classes, Records, and Collections508

ReDim Stores(0 To 0) As Store ‘ The UDT is declared

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

‘ The following For loop fills both arrays. The outer array is filled with the
‘ store name and an array consisting of product details.
‘ To accomplish this, the store name is tracked and when it changes,
‘the outer array is expanded.
‘The inner array for each outer array expands with each new product
For ThisRow = 2 To FinalRow
 StoreName = Range(“A” & ThisRow).Value
‘ Checks whether this is the first entry in the outer array
 If LBound(Stores) = 0 Then
 ThisStore = 1
 ReDim Stores(1 To 1) As Store
 Stores(1).Name = StoreName
 ReDim Stores(1).Styles(0 To 0) As Style
 Else
 For ThisStore = LBound(Stores) To UBound(Stores)
 If Stores(ThisStore).Name = StoreName Then Exit For
 Next ThisStore
 If ThisStore > UBound(Stores) Then
 ReDim Preserve Stores(LBound(Stores) To UBound(Stores) + 1) As _
 Store
 Stores(ThisStore).Name = StoreName
 ReDim Stores(ThisStore).Styles(0 To 0) As Style
 End If
 End If
 With Stores(ThisStore)
 If LBound(.Styles) = 0 Then
 ReDim .Styles(1 To 1) As Style
 Else
 ReDim Preserve .Styles(LBound(.Styles) To _
 UBound(.Styles) + 1) As Style
 End If
 With .Styles(UBound(.Styles))
 .StyleName = Range(“B” & ThisRow).Value
 .Price = Range(“C” & ThisRow).Value
 .UnitsSold = Range(“D” & ThisRow).Value
 .UnitsOnHand = Range(“E” & ThisRow).Value
 End With
 End With
Next ThisRow

‘ Create a report on a new sheet
Sheets.Add
Range(“A1:E1”).Value = Array(“Store Name”, “Units Sold”, _
 “Dollars Sold”, “Units On Hand”, “Dollars On Hand”)
CurrRow = 2

For ThisStore = LBound(Stores) To UBound(Stores)
 With Stores(ThisStore)
 TotalDollarsSold = 0
 TotalUnitsSold = 0
 TotalDollarsOnHand = 0
 TotalUnitsOnHand = 0
‘ Go through the array of product styles within the array
‘ of stores to summarize information

509Next Steps

 For ThisStyle = LBound(.Styles) To UBound(.Styles)
 With .Styles(ThisStyle)
 TotalDollarsSold = TotalDollarsSold + .UnitsSold * .Price
 TotalUnitsSold = TotalUnitsSold + .UnitsSold
 TotalDollarsOnHand = TotalDollarsOnHand + .UnitsOnHand *
.Price
 TotalUnitsOnHand = TotalUnitsOnHand + .UnitsOnHand
 End With
 Next ThisStyle
 Range(“A” & CurrRow & “:E” & CurrRow).Value = _
 Array(.Name, TotalUnitsSold, TotalDollarsSold, _
 TotalUnitsOnHand, TotalDollarsOnHand)
 End With
 CurrRow = CurrRow + 1
Next ThisStore

End Sub

Figure 22.11
UDTs can make a poten-
tially confusing multivari-
able program easier to
write.

The results of this program have been combined with the raw data for convenience.

N
O

T
E

Chapter 10, “Userforms: An Introduction,” covered

the basics of adding controls to userforms. This

chapter continues this topic by looking at more

advanced controls and methods for making the

most out of userforms.

Using the UserForm Toolbar in the
Design of Controls on Userforms

In the VB Editor, hidden under the View menu in

the Toolbars command are a few toolbars that do

not appear unless the user intervenes. One of these

is the UserForm toolbar, shown in Figure 23.1. It

has functionality useful for organizing the controls

you add to a userform; for example, it will make all

the controls you select the same size.

Advanced Userform
Techniques

23

Centering

Ungroup

Send to

Back

Group

Alignments

Bring to Front

Uniform Size

Figure 23.1
The UserForm toolbar has
tools to organize the con-
trols on a userform.

More Userform Controls
Chapter 10 began a review of some of the controls

available on userforms. The review is continued

here. At the end of each control review is a table

listing that control’s events.

Chapter 23 Advanced Userform Techniques512

Check Boxes
Check boxes allow the user to select one or more options on a userform. Unlike the option

buttons discussed in Chapter 10, a user can select one or more check boxes at a time.

The value of a checked box is True; the value of an un checked box is False. If you clear

the value of a check box (Checkbox1.value = “”), when the userform runs, the check box

will have a faded check in it, as shown in Figure 23.2. This can be useful to verify that users

have viewed all options and made a selection.

Figure 23.2
Use the null value of the
check box to verify that
users have viewed and
answered all options.

The following code reviews all the check boxes in the language group. If a value is null, the

user is prompted to review the selections:

Private Sub btnClose_Click()

Dim Msg As String
Dim Chk As Control

Set Chk = Nothing

‘narrow down the search to just the 2nd page’s controls
For Each Chk In frm_Multipage.MultiPage1.Pages(1).Controls
 ‘only need to verify checkbox controls
 If TypeName(Chk) = “CheckBox” Then
 ‘and just in case we add more check box controls,
 ‘just check the ones in the group
 If Chk.GroupName = “Languages” Then
 ‘if the value is null (the property value is empty)
 If IsNull(Chk.Object.Value) Then
 ‘add the caption to a string
 Msg = Msg & vbNewLine & Chk.Caption
 End If
 End If
 End If
Next Chk

If Msg <> “” Then
 Msg = “The following check boxes were not verified:” & vbNewLine & Msg
 MsgBox Msg, vbInformation, “Additional Information Required”

513More Userform Controls

End If
Unload Me
End Sub

Table 23.1 lists the events for CheckBox controls.

Table 23.1 Events for CheckBox Controls

Event Description

AfterUpdate Occurs after a check box has been selected/cleared.

BeforeDragOver Occurs while the user drags and drops data onto the check box.

BeforeDropOrPaste Occurs right before the user is about to drop or paste data onto the check box.

BeforeUpdate Occurs before the check box is selected/cleared.

Change Occurs when the value of the check box is changed.

Click Occurs when the user clicks the control with the mouse.

DblClick Occurs when the user double-clicks the check box with the mouse.

Enter Occurs right before the check box receives the focus from another control on the
same userform.

Error Occurs when the check box runs into an error and cannot return the error infor-
mation.

Exit Occurs right after the check box loses focus to another control on the same user-
form.

KeyDown Occurs when the user presses a key on the keyboard.

KeyPress Occurs when the user presses an ANSI key. An ANSI key is a typeable character
such as the letter A.

KeyUp Occurs when the user releases a key on the keyboard.

MouseDown Occurs when the user presses the mouse button within the borders of the check
box.

MouseMove Occurs when the user moves the mouse within the borders of the check box.

MouseUp Occurs when the user releases the mouse button within the borders of the check
box.

Tab Strips
The MultiPage control allows a userform to have several pages. Each page of the form can

have its own set of controls, unrelated to any other control on the form. A TabStrip control

also allows a userform to have many pages, but the controls on a tab strip are identical; they

are drawn only once. Yet when the form is run, the information changes according to the

tab strip that is active (see Figure 23.3).

Chapter 23 Advanced Userform Techniques514

To learn more about MultiPage controls, see “Using the MultiPage Control to Combine Forms” on p. 198.

By default, a tab strip is thin with two tabs at the top. Right-clicking a tab enables you to

add, remove, rename, or move that tab. The tab strip should also be sized to hold all the

controls. A button for closing the form should be drawn outside the tab strip area.

The tabs can also be moved around the strip. This is done by changing the TabOrientation

property. The tabs can be at the top, bottom, left, or right side of the userform.

The following lines of code were used to create the tab strip form shown in Figure 23.3.

The Initialize sub calls the sub SetValuestoTabStrip, which sets the value for the first

tab:

Private Sub UserForm_Initialize()
SetValuesToTabStrip 1 ‘As default
End Sub

These lines of code handle what happens when a new tab is selected.

Private Sub TabStrip1_Change()
Dim lngRow As Long

lngRow = TabStrip1.Value + 1
SetValuesToTabStrip lngRow

End Sub

This sub provides the data shown on each tab. A sheet was set up, with each row corre-

sponding to a tab.

Private Sub SetValuesToTabStrip(ByVal lngRow As Long)
With frm_Staff
 .lbl_Name.Caption = Cells(lngRow, 2).Value
 .lbl_Phone.Caption = Cells(lngRow, 3).Value
 .lbl_Fax.Caption = Cells(lngRow, 4).Value
 .lbl_Email.Caption = Cells(lngRow, 5).Value
 .lbl_Website.Caption = Cells(lngRow, 6).Value
 .Show
End With
End Sub

Figure 23.3
A tab strip allows a user-
form with multiple pages
to share controls but not
information.

515More Userform Controls

The tab strip’s values are automatically filled in. They correspond to the tab’s position in

the strip; moving a tab changes its value. The value of the first tab of a tab strip is 0, which

is why in the preceding code, we add 1 to the tab strip value when the form is initialized.

If you want a single tab to have an extra control, the control could be added at runtime when the tab is

activated and removed when the tab is deactivated.

T
IP

Table 23.2 lists the events for the TabStrip control.

Table 23.2 Events for TabStrip Controls

Event Description

BeforeDragOver Occurs while the user drags and drops data onto the control.

BeforeDropOrPaste Occurs right before the user drops or pastes data into the control.

Change Occurs when the value of the control is changed.

Click Occurs when the user clicks the control with the mouse.

DblClick Occurs when the user double-clicks the control with the mouse.

Enter Occurs right before the control receives the focus from another control on the
same userform.

Error Occurs when the control runs into an error and cannot return the error informa-
tion.

Exit Occurs right after the control loses focus to another control on the same user-
form.

KeyDown Occurs when the user presses a key on the keyboard.

KeyPress Occurs when the user presses an ANSI key. An ANSI key is a typeable character,
such as the letter A.

KeyUp Occurs when the user releases a key on the keyboard.

MouseDown Occurs when the user presses the mouse button within the borders of the con-
trol.

MouseMove Occurs when the user moves the mouse within the borders of the control.

MouseUp Occurs when the user releases the mouse button within the borders of the con-
trol.

RefEdit
The RefEdit control allows the user to select a range on a sheet; the range is returned as

the value of the control. It can be added to any form. The userform disappears after it is

activated by a click of the button on the right side of the field. The userform is replaced

Chapter 23 Advanced Userform Techniques516

with the range selection form that is used when selecting ranges with Excel’s many wizard

tools. Click the button on the right to show the userform once again.

The form in Figure 23.4 and the following code allow the user to select a range, which is

then made bold.

Private Sub cb1_Click()
Range(RefEdit1.Value).Font.Bold = True
End Sub

Table 23.3 lists the events for RefEdit controls.

Table 23.3 Events for RefEdit Controls

Event Description

BeforeDragOver Occurs while the user drags and drops data onto the control.

BeforeDropOrPaste Occurs right before the user drops or pastes data into the control.

Change Occurs when the value of the control is changed.

Click Occurs when the user clicks the control with the mouse.

DblClick Occurs when the user double-clicks the control with the mouse.

Enter Occurs right before the control receives the focus from another control on the
same userform.

Error Occurs when the control runs into an error and cannot return the error informa-
tion.

Exit Occurs right after the control loses focus to another control on the same user-
form.

KeyDown Occurs when the user presses a key on the keyboard.

KeyPress Occurs when the user presses an ANSI key. An ANSI key is a typeable character,
such as the letter A.

KeyUp Occurs when the user releases a key on the keyboard.

MouseDown Occurs when the user presses the mouse button within the borders of the con-
trol.

MouseMove Occurs when the user moves the mouse within the borders of the control.

MouseUp Occurs when the user releases the mouse button within the borders of the con-
trol.

Figure 23.4
Use RefEdit to enable
the user to select a range
on a sheet.

517More Userform Controls

Toggle Buttons
 A toggle button looks like a normal command button, but when the user presses it, it stays

pressed until it is selected again. This allows a True or False value to be returned based on

the status of the button. Table 23.4 lists the events for the ToggleButton controls.

Table 23.4 Events for ToggleButton Controls

Event Description

AfterUpdate Occurs after the control’s data has been changed by the user.

BeforeDragOver Occurs while the user drags and drops data onto the control.

BeforeDropOrPaste Occurs right before the user drops or pastes data into the control.

BeforeUpdate Occurs before the data in the control is changed.

Change Occurs when the value of the control is changed.

Click Occurs when the user clicks the control with the mouse.

DblClick Occurs when the user double-clicks the control with the mouse.

Enter Occurs right before the control receives the focus from another control on
the same userform.

Error Occurs when the control runs into an error and cannot return the error informa-
tion.

Exit Occurs right after the control loses focus to another control on the same user-
form.

KeyDown Occurs when the user presses a key on the keyboard.

KeyPress Occurs when the user presses an ANSI key. An ANSI key is a typeable character,
such as the letter A.

KeyUp Occurs when the user releases a key on the keyboard.

MouseDown Occurs when the user presses the mouse button within the borders of the con-
trol.

MouseMove Occurs when the user moves the mouse within the borders of the control.

MouseUp Occurs when the user releases the mouse button within the borders of the con-
trol.

Using a Scrollbar As a Slider to Select Values
Chapter 10 discussed using a SpinButton control to allow someone to choose a date. The

spin button is useful, but it allows clients to adjust up or down by only one unit at a time.

An alternative method is to draw a horizontal or vertical scrollbar in the middle of the user-

form and use it as a slider. Clients can use arrows on the ends of the scrollbar like the spin

button arrows, but they can also grab the scrollbar and instantly drag it to a certain value.

Chapter 23 Advanced Userform Techniques518

The userform shown in Figure 23.5 includes a label named Label1 and a scrollbar called

ScrollBar1.

The userform’s Initialize code sets up the Min and Max values for the scrollbar. It initial-

izes the scrollbar to a value from Cell A1 and updates the Label1.Caption:

Private Sub UserForm_Initialize()
 Me.ScrollBar1.Min = 0
 Me.ScrollBar1.Max = 100
 Me.ScrollBar1.Value = Range(“A1”).Value
 Me.Label1.Caption = Me.ScrollBar1.Value
End Sub

Two event handlers are needed for the scrollbar. The Change event handles if users click

the arrows at the ends of the scrollbar. The Scroll event handles if they drag the slider to a

new value:

Private Sub ScrollBar1_Change()
 ‘ This event handles if they touch
 ‘ the arrows on the end of the scrollbar
 Me.Label1.Caption = Me.ScrollBar1.Value
End Sub

Private Sub ScrollBar1_Scroll()
 ‘ This event handles if they drag the slider
 Me.Label1.Caption = Me.ScrollBar1.Value
End Sub

Finally, the event attached to the button writes the scrollbar value out to the worksheet:

Private Sub btnClose_Click()
 Range(“A1”).Value = Me.ScrollBar1.Value
 Unload Me
End Sub

Table 23.5 lists the events for Scrollbar controls.

Figure 23.5
Using a scrollbar control
allows the user to drag
to a particular numeric or
data value.

519Controls and Collections

Table 23.5 Events for Scrollbar Controls

Event Description

AfterUpdate Occurs after the control’s data has been changed by the user.

BeforeDragOver Occurs while the user drags and drops data onto the control.

BeforeDropOrPaste Occurs right before the user drops or pastes data into the control.

BeforeUpdate Occurs before the data in the control is changed.

Change Occurs when the value of the control is changed.

Enter Occurs right before the control receives the focus from another control on the
same userform.

Error Occurs when the control runs into an error and cannot return the error infor-
mation.

Exit Occurs right after the control loses focus to another control on the same user-
form.

KeyDown Occurs when the user presses a key on the keyboard.

KeyPress Occurs when the user presses an ANSI key. An ANSI key is a typeable charac-
ter, such as the letter A.

KeyUp Occurs when the user releases a key on the keyboard.

Scroll Occurs when the slider is moved.

Controls and Collections
In Chapter 22, “Creating Classes, Records, and Collections,” several labels on a sheet were

grouped together into a collection. With a little more code, these labels were turned into

help screens for the users. Userform controls can also be grouped into collections to take

advantage of class modules. The following example selects or clears all the check boxes on

the userform, depending on which label the user chooses.

Place the following code in the class module, clsFormEvents. It consists of one property,

chb, and two methods, SelectAll and UnselectAll.

The SelectAll method selects a check box by setting its value to True:

Option Explicit
Public WithEvents chb As MSForms.CheckBox

Public Sub SelectAll()
chb.Value = True
End Sub

Chapter 23 Advanced Userform Techniques520

The UnselectAll method clears the check box:

Public Sub UnselectAll()
chb.Value = False
End Sub

That sets up the class module. Next, the controls need to be placed in a collection. The fol-

lowing code, placed behind the form, frm_Movies, places the check boxes into a collection.

The check boxes are part of a frame, f_Selection, which makes it easier to create the col-

lection because it narrows the number of controls that need to be checked from the entire

userform to just those controls within the frame:

Option Explicit
Dim col_Selection As New Collection

Private Sub UserForm_Initialize()
Dim ctl As MSForms.CheckBox
Dim chb_ctl As clsFormEvents

‘ Go thru the members of the frame and add them to the collection
For Each ctl In f_Selection.Controls
 Set chb_ctl = New clsFormEvents
 Set chb_ctl.chb = ctl
 col_Selection.Add chb_ctl
Next ctl

End Sub

When the form is opened, the controls are placed into the collection. All that’s left now is

to add the code for labels to select and clear the check boxes:

Private Sub lbl_SelectAll_Click()
Dim ctl As clsFormEvents

For Each ctl In col_Selection
 ctl.SelectAll
Next ctl

End Sub

The following code clears the check boxes in the collection:

Private Sub lbl_unSelectAll_Click()
Dim ctl As clsFormEvents

For Each ctl In col_Selection
 ctl.Unselectall
Next ctl

End Sub

All the check boxes can be selected and cleared with a single click of the mouse, as shown in

Figure 23.6.

521Modeless Userforms

Modeless Userforms
Have you ever had a userform active but needed to look at something on a sheet? There

was a time when the form had to be shut down before anything else in Excel could be done.

No longer! Forms can now be modeless, which means they don’t have to interfere with the

functionality of Excel. The user can type in a cell, switch to another sheet, copy/paste data,

and use the ribbon—it is as if the userform were not there.

By default, a userform is modal, which means that there is no interaction with Excel other

than the form. To make the form modeless, change the ShowModal property to False. After

it is modeless, the user can select a cell on the sheet while the form is active, as shown in

Figure 23.7.

If your controls cannot be placed in a frame, you can use a tag to create an improvised grouping. A

tag is a property that holds more information about a control. Its value is of type string, so it can

hold any type of information. For example, it can be used to create an informal group of controls from

different groupings.

T
IP

Figure 23.6
Use frames, collections,
and class modules
together to create quick
and efficient userforms.

Figure 23.7
A modeless form enables
the user to enter a cell
while the form is still
active.

Chapter 23 Advanced Userform Techniques522

Using Hyperlinks in Userforms
In the userform example shown in Figure 23.3, there is a field for e-mail and a website

address. It would be nice to click these and have a blank e-mail message or web page appear

automatically. You can do this by using the following program, which creates a new message

or opens a web browser when the corresponding label is clicked.

The application programming interface (API) declaration, and any other constants, go at the very top

of the code.

T
IP

Private Declare Function ShellExecute Lib “shell32.dll” Alias _
 “ShellExecuteA”(ByVal hWnd As Long, ByVal lpOperation As String, _
 ByVal lpFile As String, ByVal lpParameters As String, _
 ByVal lpDirectory As String, ByVal nShowCmd As Long) As Long

Const SWNormal = 1

This sub controls what happens when the e-mail label is clicked, as shown in Figure 23.8:

Private Sub lbl_Email_Click()
Dim lngRow As Long

lngRow = TabStrip1.Value + 1
ShellExecute 0&, “open”, “mailto:” & Cells(lngRow, 5).Value, _
 vbNullString, vbNullString, SWNormal

End Sub

This sub controls what happens when the website label is clicked:

Private Sub lbl_Website_Click()
Dim lngRow As Long

lngRow = TabStrip1.Value + 1
ShellExecute 0&, “open”, Cells(lngRow, 6).Value, vbNullString, _
 vbNullString, SWNormal

End Sub

523Adding Controls at Runtime

Adding Controls at Runtime
It is possible to add controls to a userform at runtime. This is convenient if you are not sure

how many items you will be adding to the form.

Figure 23.9 shows a plain form with only one button. This plain form is used to display any

number of pictures from a product catalog. The pictures and accompanying labels appear at

runtime, as the form is being displayed.

Figure 23.8
Turn e-mail addresses
and websites into click-
able links.

Figure 23.9
Flexible forms can be
created if you add most
controls at runtime.

A sales rep making a sales presentation uses this form to display a product catalog. He can

select any number of SKUs from an Excel worksheet and press a hot key to display the

form. If he selects 18 items on the worksheet, the form displays with a small version of each

picture, as shown in Figure 23.10.

If the sales rep selects fewer items, the images are displayed larger, as shown in Figure

23.11.

A number of techniques are used to create this userform on-the-fly. The initial form con-

tains only one button, called cbClose. Everything else is added on-the-fly.

Chapter 23 Advanced Userform Techniques524

Figure 23.10
The sales rep asked to
see photos of 18 SKUs.
The UserForm_
Initialize proce-
dure adds each picture
and label on-the-fly.

Figure 23.11
The logic in
Userform_
Initialize decides
how many pictures are
being displayed and
adds the appropriate size
controls.

Resizing the Userform On-the-fly
One goal is to give the best view of the images in the product catalog. This means having

the form appear as large as possible. The following code uses the form’s Height and Width

properties to make sure the form fills almost the entire screen:

‘ resize the form
Me.Height = Int(0.98 * ActiveWindow.Height)
Me.Width = Int(0.98 * ActiveWindow.Width)

525Adding Controls at Runtime

Adding a Control On-the-fly
For a normal control added at design time, it is easy to refer to the control by using its

name:

Me.cbSave.Left = 100

However, for a control that is added at runtime, you have to use the Controls collection

to set any properties for the control. For this reason, it is important to set up a variable to

hold the name of the control. Controls are added with the .Add method. The important

parameter is the bstrProgId. This code name dictates whether the added control is a label,

text box, command button, or something else.

The following code adds a new label to the form. PicCount is a counter variable used to

ensure that each label has a new name. After the form is added, specify a position for the

control by setting the Top and Left properties. You should also set a Height and Width for

the control:

LC = “LabelA” & PicCount
Me.Controls.Add bstrProgId:=”forms.label.1”, Name:=LC, Visible:=True
Me.Controls(LC).Top = 25
Me.Controls(LC).Left = 50
Me.Controls(LC).Height = 18
Me.Controls(LC).Width = 60
Me.Controls(LC).Caption = cell.value

You lose some of the AutoComplete options with this method. Normally, if you would start to type

Me.cbClose., the AutoComplete options would present the valid choices for a command button.

However, when you use the Me.Controls(LC) collection to add controls on-the-fly, VBA does not

know what type of control is referenced. In this case, it is helpful to know you need to set the Caption

property rather than the Value property for a label.

C A U T I O N

Sizing On-the-fly
In reality, you need to be able to calculate values for Top, Left, Height, and Width on-the-

fly. You would do this based on the actual height and width of the form and on how many

controls are needed.

Adding Other Controls
To add other types of controls, change the ProgId used with the Add method. Table 23.6

shows the ProgIds for various types of controls.

Chapter 23 Advanced Userform Techniques526

Table 23.6 Userform Controls and Corresponding ProgIds

Control ProgId

CheckBox Forms.CheckBox.1

ComboBox Forms.ComboBox.1

CommandButton Forms.CommandButton.1

Frame Forms.Frame.1

Image Forms.Image.1

Label Forms.Label.1

ListBox Forms.ListBox.1

MultiPage Forms.MultiPage.1

OptionButton Forms.OptionButton.1

ScrollBar Forms.ScrollBar.1

SpinButton Forms.SpinButton.1

TabStrip Forms.TabStrip.1

TextBox Forms.TextBox.1

ToggleButton Forms.ToggleButton.1

Adding an Image On-the-fly
There is some unpredictability in adding images. Any given image might be shaped either

landscape or portrait. The image might be small or huge. The strategy you might want to

use is to let the image load full size by setting the .AutoSize parameter to True before load-

ing it:

TC = “Image” & PicCount
Me.Controls.Add bstrProgId:=”forms.image.1”, Name:=TC, Visible:=True
Me.Controls(TC).Top = LastTop
Me.Controls(TC).Left = LastLeft
Me.Controls(TC).AutoSize = True
On Error Resume Next
Me.Controls(TC).Picture = LoadPicture(fname)
On Error GoTo 0

After the image has loaded, you can read the control’s Height and Width properties to deter-

mine whether the image is landscape or portrait and whether the image is constrained by

available width or available height:

‘ The picture resized the control to full size
‘ determine the size of the picture
Wid = Me.Controls(TC).Width
Ht = Me.Controls(TC).Height
WidRedux = CellWid / Wid
HtRedux = CellHt / Ht
If WidRedux < HtRedux Then

527Adding Controls at Runtime

 Redux = WidRedux
Else
 Redux = HtRedux
End If
NewHt = Int(Ht * Redux)
NewWid = Int(Wid * Redux)

After you find the proper size for the image so that it draws without distortion, set the

AutoSize property to False. Use the correct height and width to have the image not appear

distorted:

‘ Now resize the control
Me.Controls(TC).AutoSize = False
Me.Controls(TC).Height = NewHt
Me.Controls(TC).Width = NewWid
Me.Controls(TC).PictureSizeMode = fmPictureSizeModeStretch

Putting It All Together
This is the complete code for the Picture Catalog userform:

Private Sub UserForm_Initialize()
 ‘ Display pictures of each SKU selected on the worksheet
 ‘ This may be anywhere from 1 to 36 pictures
 PicPath = “C:\qimage\qi”
 Dim Pics ()

 ‘ resize the form
 Me.Height = Int(0.98 * ActiveWindow.Height)
 Me.Width = Int(0.98 * ActiveWindow.Width)

 ‘ determine how many cells are selected
 ‘ We need one picture and label for each cell
 CellCount = Selection.Cells.Count
 ReDim Preserve Pics(1 To CellCount)

 ‘ Figure out the size of the resized form
 TempHt = Me.Height
 TempWid = Me.Width

 ‘ The number of columns is a roundup of SQRT(CellCount)
 ‘ This will ensure 4 rows of 5 pictures for 20, etc.
 NumCol = Int(0.99 + Sqr(CellCount))
 NumRow = Int(0.99 + CellCount / NumCol)

 ‘ Figure out the ht and wid of each square
 ‘ Each column will have 2 pts to left & right of pics
 CellWid = Application.WorksheetFunction.Max(Int(TempWid / NumCol) - 4, 1)
 ‘ each row needs to have 33 points below it for the label
 CellHt = Application.WorksheetFunction.Max(Int(TempHt / NumRow) - 33, 1)

 PicCount = 0 ‘ Counter variable
 LastTop = 2
 MaxBottom = 1
 ‘ Build each row on the form
 For x = 1 To NumRow
 LastLeft = 3

Chapter 23 Advanced Userform Techniques528

 ‘ Build each column in this row
 For Y = 1 To NumCol
 PicCount = PicCount + 1
 If PicCount > CellCount Then
 ‘ There are not an even number of pictures to fill
 ‘ out the last row
 Me.Height = MaxBottom + 100
 Me.cbClose.Top = MaxBottom + 25
 Me.cbClose.Left = Me.Width - 70
 Repaint ‘redraws the form
 Exit Sub
 End If
 ThisStyle = Selection.Cells(PicCount).Value
 ThisDesc = Selection.Cells(PicCount).Offset(0, 1).Value
 fname = PicPath & ThisStyle & “.jpg”
 TC = “Image” & PicCount
 Me.Controls.Add bstrProgId:=”forms.image.1”, Name:=TC, _
 Visible:=True
 Me.Controls(TC).Top = LastTop
 Me.Controls(TC).Left = LastLeft
 Me.Controls(TC).AutoSize = True
 On Error Resume Next
 Me.Controls(TC).Picture = LoadPicture(fname)
 On Error GoTo 0

 ‘ The picture resized the control to full size
 ‘ determine the size of the picture
 Wid = Me.Controls(TC).Width
 Ht = Me.Controls(TC).Height
 WidRedux = CellWid / Wid
 HtRedux = CellHt / Ht
 If WidRedux < HtRedux Then
 Redux = WidRedux
 Else
 Redux = HtRedux
 End If
 NewHt = Int(Ht * Redux)
 NewWid = Int(Wid * Redux)

 ‘ Now resize the control
 Me.Controls(TC).AutoSize = False
 Me.Controls(TC).Height = NewHt
 Me.Controls(TC).Width = NewWid
 Me.Controls(TC).PictureSizeMode = fmPictureSizeModeStretch
 Me.Controls(TC).ControlTipText = “Style “ & _
 ThisStyle & “ “ & ThisDesc

 ‘ Keep track of the bottom-most & right-most picture
 ThisRight = Me.Controls(TC).Left + Me.Controls(TC).Width
 ThisBottom = Me.Controls(TC).Top + Me.Controls(TC).Height
 If ThisBottom > MaxBottom Then MaxBottom = ThisBottom

 ‘ Add a label below the picture
 LC = “LabelA” & PicCount

529Adding Help to the Userform

 Me.Controls.Add bstrProgId:=”forms.label.1”, Name:=LC, _
 Visible:=True
 Me.Controls(LC).Top = ThisBottom + 1
 Me.Controls(LC).Left = LastLeft
 Me.Controls(LC).Height = 18
 Me.Controls(LC).Width = CellWid
 Me.Controls(LC).Caption = “Style “ & ThisStyle & “ “ & ThisDesc

 ‘ Keep track of where the next picture should display
 LastLeft = LastLeft + CellWid + 4
 Next Y ‘ end of this row
 LastTop = MaxBottom + 21 + 16
 Next x

 Me.Height = MaxBottom + 100
 Me.cbClose.Top = MaxBottom + 25
 Me.cbClose.Left = Me.Width - 70
 Repaint
End Sub

Adding Help to the Userform
Even though you designed a great userform, there is one thing missing: guidance for the

users. The following sections show four ways you can help users fill out the form properly.

Showing Accelerator Keys
Built-in forms often have keyboard shortcuts that allow actions to be triggered or fields

selected with a few keystrokes. These shortcuts are identified by an underlined letter on a

button or label.

You can add this same capability to custom userforms by entering a value in the

Accelerator property of the control. Alt + the accelerator key selects the control. For exam-

ple, in Figure 23.12, Alt+H selects the VHS check box. Repeating the combination clears

the box.

Figure 23.12
Use accelerator key
combinations to give
userforms the power of
keyboard shortcuts.

Chapter 23 Advanced Userform Techniques530

Adding Control Tip Text
When a cursor is waved over a toolbar, tip text appears, hinting at what the control does.

You can also add tip text to userforms by entering a value in the ControlTipText property

of a control. In Figure 23.13, tip text has been added to the frame surrounding the various

categories.

Figure 23.13
Add tips to controls to
provide help to users.

Creating the Tab Order
Users can also tab from one field to another. This is an automatic feature in a form. To

control which field the next tab brings a user to, you can set the TapStop property value for

each control.

The first tab stop is zero, and the last tab stop is equal to the number of controls in a

group. Remember, a group can be created with a frame. Excel does not allow multiple

controls to have the same tab stop. After tab stops are set, the user can use the Tab key and

Spacebar to select/deselect various options, as shown in Figure 23.14.

Figure 23.14
The options in this form
were selected with the
Tab key and Spacebar.

Coloring the Active Control
Another method for helping a user fill out a form is to color the active field. The following

example changes the color of a text box or combo box when it is active.

531Adding Help to the Userform

Place the following in a class module called clsCtlColor:

Public Event GetFocus()
Public Event LostFocus(ByVal strCtrl As String)
Private strPreCtr As String

Public Sub CheckActiveCtrl(objForm As MSForms.UserForm)

With objForm
 If TypeName(.ActiveControl) = “ComboBox” Or _
 TypeName(.ActiveControl) = “TextBox” Then
 strPreCtr = .ActiveControl.Name
 On Error GoTo Terminate
 Do
 DoEvents
 If .ActiveControl.Name <> strPreCtr Then
 If TypeName(.ActiveControl) = “ComboBox” Or _
 TypeName(.ActiveControl) = “TextBox” Then
 RaiseEvent LostFocus(strPreCtr)
 strPreCtr = .ActiveControl.Name
 RaiseEvent GetFocus
 End If
 End If
 Loop
 End If
End With

Terminate:
 Exit Sub

End Sub

Place the following behind the userform:

Private WithEvents objForm As clsCtlColor

Private Sub UserForm_Initialize()
Set objForm = New clsCtlColor
End Sub

This sub changes the BackColor of the active control when the form is activated:

Private Sub UserForm_Activate()
If TypeName(ActiveControl) = “ComboBox” Or _
 TypeName(ActiveControl) = “TextBox” Then
 ActiveControl.BackColor = &HC0E0FF
End If
objForm.CheckActiveCtrl Me
End Sub

This sub changes the BackColor of the active control when it gets the focus:

Private Sub objForm_GetFocus()
ActiveControl.BackColor = &HC0E0FF
End Sub

Chapter 23 Advanced Userform Techniques532

This sub changes the BackColor back to white when the control loses the focus:

Private Sub objForm_LostFocus(ByVal strCtrl As String)
Me.Controls(strCtrl).BackColor = &HFFFFFF
End Sub

This sub clears the objForm when the form is closed:

Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)
Set objForm = Nothing
End Sub

You have created several spreadsheets containing store data. The primary key of each set is the store number. The work-

book is used by several people, but not everyone memorizes stores by his or her store numbers. You need some way of

letting a user select a store by its name. At the same time, you need to return the store number to be used in the code.

You could use VLOOKUP or MATCH, but there is another way.

A list box can have more than one column, but not all the columns need to be visible to the user. In addition, the user can

select an item from the visible list, but the list box returns the corresponding value from another column.

Draw a list box and set the ColumnCount property to 2. Set the RowSource to a two-column range called Stores.

The first column of the range is the store number; the second column is the store name. At this point, the list box is

displaying both columns of data. To change this, set the column width to 0, 20—the text automatically updates to 0

pt;20 pt. The first column is now hidden. Figure 23.15 shows the list box properties as they need to be.

The appearance of the list box has now been set. When the user activates the list box, she will see only the store names.

To return the value of the first column, set the BoundColumn property to 1. This can be done through the Properties

window or through code. This example uses code to maintain the flexibility of returning the store number (see Figure

23.16):

Private Sub UserForm_Initialize()
 lb_StoreName.BoundColumn = 1
End Sub
Private Sub lb_StoreName_Click()
lbl_StoreNum.Caption = lb_StoreName.Value
End Sub

C A S E S T U D Y : M U LT I C O L U M N L I S T B O X E S

Figure 23.15
Setting the list box
properties creates a
two-column list box that
appears to be a single
column of data.

533Transparent Forms

Transparent Forms
Have you ever had a form that you had to keep moving out of the way so you could see

the data behind it? The following code sets the userform at a 50 percent transparency (see

Figure 23.17) so that you can see the data behind it without moving the form somewhere

else on the screen (and blocking more data).

Figure 23.16
Use a two-column list box
to allow the user to select
a store name but return
the store number.

Figure 23.17
Create a 50 percent
transparent form to view
the data on the sheet
behind it.

Place the following in the declarations section of the userform:

Private Declare Function GetActiveWindow Lib “USER32” () As Long
Private Declare Function SetWindowLong Lib “USER32” Alias _
 “SetWindowLongA” (ByVal hWnd As Long, ByVal nIndex As Long, _
 ByVal dwNewLong As Long) As Long
Private Declare Function GetWindowLong Lib “USER32” Alias _
 “GetWindowLongA” (ByVal hWnd As Long, ByVal nIndex As Long) As Long
Private Declare Function SetLayeredWindowAttributes Lib “USER32” _
 (ByVal hWnd As Long, ByVal crKey As Integer, _
 ByVal bAlpha As Integer, ByVal dwFlags As Long) As Long
Private Const WS_EX_LAYERED = &H80000
Private Const LWA_COLORKEY = &H1
Private Const LWA_ALPHA = &H2
Private Const GWL_EXSTYLE = &HFFEC
Dim hWnd As Long

Chapter 23 Advanced Userform Techniques534

Place the following behind a userform. When the form is activated, the transparency will be

set:

Private Sub UserForm_Activate()
Dim nIndex As Long

hWnd = GetActiveWindow
nIndex = GetWindowLong(hWnd, GWL_EXSTYLE)
SetWindowLong hWnd, GWL_EXSTYLE, nIndex Or WS_EX_LAYERED
‘50% semitransparent
SetLayeredWindowAttributes hWnd, 0, (255 * 50) / 100, LWA_ALPHA

End Sub

What Is the Windows API?
With all the wonderful things you can do in Excel

VBA, there are some things that are out of VBA’s

reach or are just too difficult to do, such as finding

out what the user’s screen resolution setting is. This

is where the Windows application programming

interface (API) can help.

If you look in the folder \Winnt\System32

(Windows NT systems), you will see many files

with the extension .dll. These files, which are

dynamic link libraries (dll), contain various func-

tions and procedures that other programs can

access, including VBA. They give the user access to

functionality used by the Windows operating sys-

tem and many other programs.

Windows API

24

Keep in mind that Windows API declarations are accessible only on

computers running the Microsoft Windows operating system.

N
O

T
E

This chapter does not teach you how to write API

declarations, but it does teach you the basics of

interpreting and using them. Several useful examples

have also been included, and you are shown how to

find more.

Chapter 24 Windows API536

Understanding an API Declaration
The following line is an example of an API function:

Private Declare Function GetUserName _
 Lib “advapi32.dll” Alias “GetUserNameA” _
 (ByVal lpBuffer As String, nSize As Long) _
 As Long

There are two types of API declarations:

 ■ Functions—Return information

 ■ Procedures—Do something to the system

The declarations are structured similarly.

Basically, what this declaration is saying is

 ■ It is Private; therefore, it can be used only in the module in which it is declared.

Declare it Public in a standard module if you want to share it among several modules.

API declarations in standard modules can be public or private. API declarations in class modules must

be private.

C A U T I O N

 ■ It will be referred to as GetUserName in your program. This is the variable name

assigned by you.

 ■ The function being used is found in advapi32.dll.

 ■ The alias, GetUserNameA, is what the function is referred to in the DLL. This name is

case-sensitive and cannot be changed; it is specific to the DLL. There are often two

versions of each API function. One version uses the ANSI character set and has aliases

that end with the letter A. The other version uses the Unicode character set and has

aliases that end with the letter W. When specifying the alias, you are telling VBA

which version of the function to use.

 ■ There are two parameters: lpBuffer and nSize. These are two arguments that the DLL

function accepts.

The downside of using APIs is that there may be no errors when your code compiles or runs. This

means that an incorrectly configured API call can cause your computer to crash or lock up. For this

reason, it is a good idea to save often.

C A U T I O N

537API Examples

Using an API Declaration
Using an API is no different from calling a function or procedure you created in VBA. The

following example uses the GetUserName declaration in a function to return the UserName in

Excel:

Public Function UserName() As String
Dim sName As String * 256
Dim cChars As Long

cChars = 256
If GetUserName(sName, cChars) Then
 UserName = Left$(sName, cChars - 1)
End If
End Function
Sub ProgramRights()
Dim NameofUser As String

NameofUser = UserName

Select Case NameofUser
 Case Is = “Administrator”
 MsgBox “You have full rights to this computer”
 Case Else
 MsgBox “You have limited rights to this computer”
End Select

End Sub

Run the ProgramRights macro, and you will learn whether you are currently signed on as

the administrator. The result shown in Figure 24.1 indicates an administrator sign-on.

Figure 24.1
The GetUserName
API function can be used
to get a user’s Windows
login name—which is
more difficult to edit than
the Excel username.

API Examples
The following sections provide more examples of useful API declarations you can use in

your Excel programs. Each example starts with a short description of what the example can

do, followed by the actual declarations, and an example of its use.

Chapter 24 Windows API538

Retrieve the Computer Name
This API function returns the computer name. This is the name of the computer found

under MyComputer, Network Identification:

Private Declare Function GetComputerName Lib “kernel32” Alias _
 “GetComputerNameA” (ByVal lpBuffer As String, ByRef nSize As Long) As Long
Private Function ComputerName() As String

Dim stBuff As String * 255, lAPIResult As Long
Dim lBuffLen As Long

lBuffLen = 255
lAPIResult = GetComputerName(stBuff, lBuffLen)
If lBuffLen > 0 Then ComputerName = Left(stBuff, lBuffLen)

End Function

Sub ComputerCheck()
Dim CompName As String

CompName = ComputerName

If CompName <> “BillJelenPC” Then
 MsgBox _
 “This application does not have the right to run on this computer.”
 ActiveWorkbook.Close SaveChanges:=False
End If

End Sub

The examples in this book are 32-bit API declarations and may not work in 64-bit Excel. For example, if

in a 32-bit version we have this declaration:

Private Declare Function GetWindowLongptr Lib “USER32” Alias _
“GetWindowLongA” (ByVal hWnd As Long, ByVal nIndex As _
Long) As Long

It will need to be changed to the following to work in the 64-bit version:

 Private Declare PtrSafe Function GetWindowLongptr Lib _
“USER32” Alias _

“GetWindowLongA” (ByVal hWnd As LongPtr, ByVal nIndex As _
Long) As LongPtr

But how can you know whether a Long needs to be changed to a LongPtr or to Long,Long?

It might not even need to be changed at all! Because of the confusion that has ensued, Jan Karel

Pieterse of JKP Application Development Services (www.jkp-ads.com) is working on an ever-growing

web page listing the proper syntax for the 64-bit declarations. It can be found at www.jkp-ads.com/

articles/apideclarations.asp.

C A U T I O N

www.jkp-ads.com
www.jkp-ads.com/articles/apideclarations.asp
www.jkp-ads.com/articles/apideclarations.asp

539API Examples

The ComputerCheck macro uses an API call to get the name of the computer. In Figure

24.2, the program refuses to run for any computer except the hard-coded computer name

of the owner.

Check Whether an Excel File Is Open on a Network
You can check whether you have a file open in Excel by trying to set the workbook to an

object. If the object is Nothing (empty), you know the file is not opened. However, what if

you want to see whether someone else on a network has the file open? The following API

function returns that information:

Private Declare Function lOpen Lib “kernel32” Alias “_lopen” _
 (ByVal lpPathName As String, ByVal iReadWrite As Long) As Long

Private Declare Function lClose Lib “kernel32” _
 Alias “_lclose” (ByVal hFile As Long) As Long

Private Const OF_SHARE_EXCLUSIVE = &H10
Private Function FileIsOpen(strFullPath_FileName As String) As Boolean
Dim hdlFile As Long
Dim lastErr As Long

hdlFile = -1

hdlFile = lOpen(strFullPath_FileName, OF_SHARE_EXCLUSIVE)

If hdlFile = -1 Then
 lastErr = Err.LastDllError
Else
 lClose (hdlFile)
End If

FileIsOpen = (hdlFile = -1) And (lastErr = 32)

End Function

Sub CheckFileOpen()

If FileIsOpen(“C:\XYZ Corp.xlsx”) Then
 MsgBox “File is open”
Else
 MsgBox “File is not open”
End If

End Sub

Calling the FileIsOpen function with a particular path and filename as the parameter will

tell you whether someone has the file open.

Figure 24.2
Use the computer name
to verify that an applica-
tion has the rights to run
on the installed computer.

Chapter 24 Windows API540

Retrieve Display-Resolution Information
The following API function retrieves the computer’s display size:

Declare Function DisplaySize Lib “user32” Alias _
 “GetSystemMetrics” (ByVal nIndex As Long) As Long

Public Const SM_CXSCREEN = 0
Public Const SM_CYSCREEN = 1

Function VideoRes() As String
Dim vidWidth
Dim vidHeight

vidWidth = DisplaySize(SM_CXSCREEN)
vidHeight = DisplaySize(SM_CYSCREEN)

Select Case (vidWidth * vidHeight)
 Case 307200
 VideoRes = “640 x 480”
 Case 480000
 VideoRes = “800 x 600”
 Case 786432
 VideoRes = “1024 x 768”
 Case Else
 VideoRes = “Something else”
End Select

End Function

Sub CheckDisplayRes()
Dim VideoInfo As String
Dim Msg1 As String, Msg2 As String, Msg3 As String

VideoInfo = VideoRes

Msg1 = “Current resolution is set at “ & VideoInfo & Chr(10)
Msg2 = “Optimal resolution for this application is 1024 x 768” & Chr(10)
Msg3 = “Please adjust resolution”

Select Case VideoInfo
 Case Is = “640 x 480”
 MsgBox Msg1 & Msg2 & Msg3
 Case Is = “800 x 600”
 MsgBox Msg1 & Msg2
 Case Is = “1024 x 768”
 MsgBox Msg1
 Case Else
 MsgBox Msg2 & Msg3
End Select

End Sub

The CheckDisplayRes macro warns the client that the display setting is not optimal for the

application.

541API Examples

Custom About Dialog
If you go to Help, About Windows in Windows Explorer, you get a nice little About dialog

with information about the Windows Explorer and a few system details. With the follow-

ing code, you can pop up that window in your own program and customize a few items, as

shown in Figure 24.3.

Figure 24.3
You can customize the
About dialog used by
Windows for your own
program.

Declare Function ShellAbout Lib “shell32.dll” Alias “ShellAboutA” _
 (ByVal hwnd As Long, ByVal szApp As String, ByVal szOtherStuff As _
 String, ByVal hIcon As Long) As Long
Declare Function GetActiveWindow Lib “user32” () As Long

Disable the X for Closing a Userform
The X button located in the upper-right corner of a userform can be used to shut down the

application. The following API declarations work together to disable that X, forcing the

user to use the Close button. When the form is initialized, the button is disabled. After the

form is closed, the X button is reset to normal:

Private Declare Function FindWindow Lib “user32” Alias “FindWindowA” _
 (ByVal lpClassName As String, ByVal lpWindowName As String) As Long
Private Declare Function GetSystemMenu Lib “user32” (ByVal hWnd As Long, _
 ByVal bRevert As Long) As Long
Private Declare Function DeleteMenu Lib “user32” _

Sub AboutMrExcel()
 Dim hwnd As Integer
 On Error Resume Next
 hwnd = GetActiveWindow()

 ShellAbout hwnd, Nm, vbCrLf + Chr(169) + “” & “ YASHADA (yashada.org)” _
 + vbCrLf, 0
 On Error GoTo 0
End Sub

Chapter 24 Windows API542

 (ByVal hMenu As Long, ByVal nPosition As Long, _
 ByVal wFlags As Long) As Long
Private Const SC_CLOSE As Long = &HF060

Private Sub UserForm_Initialize()
Dim hWndForm As Long
Dim hMenu As Long

hWndForm = FindWindow(“ThunderDFrame”, Me.Caption) ‘XL2000
hMenu = GetSystemMenu(hWndForm, 0)
DeleteMenu hMenu, SC_CLOSE, 0&

End Sub

The DeleteMenu macro in the UserForm_Initialize procedure causes the X in the corner

of the userform to be grayed out, as shown in Figure 24.4. This forces the client to use your

programmed Close button.

Running Timer
You can use the NOW function to get the time, but what if you needed a running timer dis-

playing the exact time as the seconds tick by? The following API declarations work together

to provide this functionality. The timer is placed in Cell A1 of Sheet1.

Public Declare Function SetTimer Lib “user32” _
 (ByVal hWnd As Long, ByVal nIDEvent As Long, _
 ByVal uElapse As Long, ByVal lpTimerFunc As Long) As Long
Public Declare Function KillTimer Lib “user32” _
 (ByVal hWnd As Long, ByVal nIDEvent As Long) As Long
Public Declare Function FindWindow Lib “user32” _
 Alias “FindWindowA” (ByVal lpClassName As String, _
 ByVal lpWindowName As String) As Long

Private lngTimerID As Long
Public datStartingTime As Date

Public Sub StartTimer()
lngTimerID = SetTimer(0, 1, 10, AddressOf RunTimer)
End Sub

Public Sub StopTimer()
Dim lRet As Long
lRet = KillTimer(0, lngTimerID)
End Sub

Figure 24.4
Disable the X button on
a userform, forcing users
to use the Close button
to shut down the form
properly and rendering
them unable to bypass
any code attached to the
Close button.

543API Examples

Private Sub RunTimer(ByVal hWnd As Long, _
 ByVal uint1 As Long, ByVal nEventId As Long, _
 ByVal dwParam As Long)
On Error Resume Next
Sheet1.Range(“A1”).Value = Now - datStartingTime
End Sub

Run the StartTimer macro to have the current date and time constantly updated in cell A1.

Playing Sounds
Have you ever wanted to play a sound to warn users or congratulate them? You could add a

sound object to a sheet and call that sound. However, it would be easier to use the follow-

ing API declaration and specify the proper path to a sound file:

Public Declare Function PlayWavSound Lib “winmm.dll” _
 Alias “sndPlaySoundA” (ByVal LpszSoundName As String, _
 ByVal uFlags As Long) As Long

Public Sub PlaySound()
Dim SoundName As String

SoundName = “C:\WinNT\Media\Chimes.wav”
PlayWavSound SoundName, 0

End Sub

Retrieving a File Path
The following API enables you to create a custom file browser. The program example using

the API customizes the function call to create a browser for a specific need. In this case, it

will return the file path of a user-selected file:

Type tagOPENFILENAME
 lStructSize As Long
 hwndOwner As Long
 hInstance As Long
 strFilter As String
 strCustomFilter As String
 nMaxCustFilter As Long
 nFilterIndex As Long
 strFile As String
 nMaxFile As Long
 strFileTitle As String
 nMaxFileTitle As Long
 strInitialDir As String
 strTitle As String
 Flags As Long
 nFileOffset As Integer
 nFileExtension As Integer
 strDefExt As String
 lCustData As Long
 lpfnHook As Long
 lpTemplateName As String
End Type

Chapter 24 Windows API544

Declare Function aht_apiGetOpenFileName Lib “comdlg32.dll” _
 Alias “GetOpenFileNameA” (OFN As tagOPENFILENAME) As Boolean
Declare Function aht_apiGetSaveFileName Lib “comdlg32.dll” _
 Alias “GetSaveFileNameA” (OFN As tagOPENFILENAME) As Boolean
Declare Function CommDlgExtendedError Lib “comdlg32.dll” () As Long

Global Const ahtOFN_READONLY = &H1
Global Const ahtOFN_OVERWRITEPROMPT = &H2
Global Const ahtOFN_HIDEREADONLY = &H4
Global Const ahtOFN_NOCHANGEDIR = &H8
Global Const ahtOFN_SHOWHELP = &H10
Global Const ahtOFN_NOVALIDATE = &H100
Global Const ahtOFN_ALLOWMULTISELECT = &H200
Global Const ahtOFN_EXTENSIONDIFFERENT = &H400
Global Const ahtOFN_PATHMUSTEXIST = &H800
Global Const ahtOFN_FILEMUSTEXIST = &H1000
Global Const ahtOFN_CREATEPROMPT = &H2000
Global Const ahtOFN_SHAREAWARE = &H4000
Global Const ahtOFN_NOREADONLYRETURN = &H8000
Global Const ahtOFN_NOTESTFILECREATE = &H10000
Global Const ahtOFN_NONETWORKBUTTON = &H20000
Global Const ahtOFN_NOLONGNAMES = &H40000
Global Const ahtOFN_EXPLORER = &H80000
Global Const ahtOFN_NODEREFERENCELINKS = &H100000
Global Const ahtOFN_LONGNAMES = &H200000

Function ahtCommonFileOpenSave(_
 Optional ByRef Flags As Variant, _
 Optional ByVal InitialDir As Variant, _
 Optional ByVal Filter As Variant, _
 Optional ByVal FilterIndex As Variant, _
 Optional ByVal DefaultExt As Variant, _
 Optional ByVal FileName As Variant, _
 Optional ByVal DialogTitle As Variant, _
 Optional ByVal hwnd As Variant, _
 Optional ByVal OpenFile As Variant) As Variant

‘ This is the entry point you’ll use to call the common
‘ file Open/Save As dialog. The parameters are listed
‘ below, and all are optional.
‘
‘ In:
‘ Flags: one or more of the ahtOFN_* constants, OR’d together.
‘ InitialDir: the directory in which to first look
‘ Filter: a set of file filters
‘ (Use AddFilterItem to set up Filters)
‘ FilterIndex: 1-based integer indicating which filter
‘ set to use, by default (1 if unspecified)
‘ DefaultExt: Extension to use if the user doesn’t enter one.
‘ Only useful on file saves.
‘ FileName: Default value for the filename text box.
‘ DialogTitle: Title for the dialog.
‘ hWnd: parent window handle
‘ OpenFile: Boolean(True=Open File/False=Save As)
‘ Out:
‘ Return Value: Either Null or the selected filename

Dim OFN As tagOPENFILENAME

545API Examples

Dim strFileName As String
Dim strFileTitle As String
Dim fResult As Boolean

‘ Give the dialog a caption title.
If IsMissing(InitialDir) Then InitialDir = CurDir
If IsMissing(Filter) Then Filter = “”
If IsMissing(FilterIndex) Then FilterIndex = 1
If IsMissing(Flags) Then Flags = 0&
If IsMissing(DefaultExt) Then DefaultExt = “”
If IsMissing(FileName) Then FileName = “”
If IsMissing(DialogTitle) Then DialogTitle = “”
If IsMissing(OpenFile) Then OpenFile = True

‘ Allocate string space for the returned strings.
strFileName = Left(FileName & String(256, 0), 256)
strFileTitle = String(256, 0)

‘ Set up the data structure before you call the function
With OFN
 .lStructSize = Len(OFN)
 .strFilter = Filter
 .nFilterIndex = FilterIndex
 .strFile = strFileName
 .nMaxFile = Len(strFileName)
 .strFileTitle = strFileTitle
 .nMaxFileTitle = Len(strFileTitle)
 .strTitle = DialogTitle
 .Flags = Flags
 .strDefExt = DefaultExt
 .strInitialDir = InitialDir
 .hInstance = 0
 .lpfnHook = 0
 .strCustomFilter = String(255, 0)
 .nMaxCustFilter = 255
End With

‘ This passes the desired data structure to the
‘ Windows API, which will in turn display
‘ the Open/Save As dialog.
If OpenFile Then
 fResult = aht_apiGetOpenFileName(OFN)
Else
 fResult = aht_apiGetSaveFileName(OFN)
End If

‘ The function call filled in the strFileTitle member
‘ of the structure. You have to write special code
‘ to retrieve that if you’re interested.
If fResult Then
‘ You might care to check the Flags member of the
‘ structure to get information about the chosen file.
‘ In this example, if you bothered to pass a
‘ value for Flags, we’ll fill it in with the outgoing
‘ Flags value.
 If Not IsMissing(Flags) Then Flags = OFN.Flags
 ahtCommonFileOpenSave = TrimNull(OFN.strFile)
 Else

Chapter 24 Windows API546

 ahtCommonFileOpenSave = vbNullString
 End If

End Function

Function ahtAddFilterItem(strFilter As String, _
 strDescription As String, Optional varItem As Variant) As String
‘ Tack a new chunk onto the file filter.
‘ That is, take the old value, stick onto it the description,
‘ (like “Databases”), a null character, the skeleton
‘ (like “*.mdb;*.mda”), and a final null character.

If IsMissing(varItem) Then varItem = “*.*”
ahtAddFilterItem = strFilter & strDescription & _
 vbNullChar & varItem & vbNullChar

End Function

Private Function TrimNull(ByVal strItem As String) As String
Dim intPos As Integer

intPos = InStr(strItem, vbNullChar)

If intPos > 0 Then
 TrimNull = Left(strItem, intPos - 1)
Else
 TrimNull = strItem
End If

End Function

This is the actual program created to use this information:

Function GetFileName(strPath As String)
Dim strFilter As String
Dim lngFlags As Long

strFilter = ahtAddFilterItem(strFilter, “Excel Files (*.xls)”)
GetFileName = ahtCommonFileOpenSave(InitialDir:=strPath, _
 Filter:=strFilter, FilterIndex:=3, Flags:=lngFlags, _
 DialogTitle:=”Please select file to import”)

End Function

Next, create the userform. The following code is attached to the Browse button, as shown

in Figure 24.5. Note that the function specifies the starting directory:

Private Sub cmdBrowse_Click()

txtFile = GetFileName(“c:\”)

End Sub

547Next Steps

Finding More API Declarations

Figure 24.5
Create a custom browse
window to return the file
path of a user-selected
file. This can be used to
ensure the user does not
select the wrong file for
import.

There are many more API declarations than the ones discussed in this chapter. In fact,

this chapter barely scratched the surface of the wealth of procedures and functions avail-

able. Microsoft has many tools available to help you create your own APIs (search Platform

SDK). Many programmers, such as Ivan F. Moala, have also developed declarations to share

(http://xcelfiles.homestead.com/APIIndex.html). The site is full of examples that include
instructions.

http://xcelfiles.homestead.com/APIIndex.html

Errors are bound to happen. Even when you test

and retest your code, after a report is put into daily

production and used for hundreds of days, some-

thing unexpected will eventually happen. Your goal

should be to try to head off obscure errors as you

code. For this reason, you should always be think-

ing of what unexpected things could happen some-

day that could make your code not work.

What Happens When an Error Occurs?
When VBA encounters an error and you have no

error-checking code in place, the program stops

and presents you or your client with the “Continue,

End, Debug, Help” error message, as shown in

Figure 25.1.

When presented with the choice to end or debug,

you should click Debug. The VB Editor highlights

the line that caused the error in yellow. When you

hover the cursor over any variable, you will see the

current value of the variable, which provides a lot of

information about what could have caused the error

(see Figure 25.2).

Excel is notorious for returning errors that are not

very meaningful. For example, dozens of situations

can cause a 1004 error. Seeing the offending line

highlighted in yellow and examining the current

value of any variables will help you discover the real

cause of an error.

After examining the line in error, click the Reset

button to stop execution of the macro. The Reset

button is the square button under the Run item in

the main menu, as shown in Figure 25.3.

Handling Errors

25

Chapter 25 Handling Errors550

Figure 25.1
An unhandled error in an
unprotected module pres-
ents you with a choice to
end or debug.

Hover over the

x for a tooltip.

Figure 25.2
After clicking Debug, the
macro is in break mode.
Hover the cursor over a
variable; after a few sec-
onds, the current value of
the variable is shown.

Reset Icon

Figure 25.3
The Reset button looks
like the Stop button in
the set of three buttons
that resemble a VCR con-
trol panel.

If you fail to click Reset to end the macro, and then attempt to run another macro, you are presented

with the annoying error message shown in Figure 25.4. The message is annoying because you start in

Excel, but when this message window is displayed, the screen automatically switches to display the VB

Editor. However, immediately after you click OK, you are returned to the Excel user interface instead of

being left in the VB Editor. Because this error message occurs quite often, it would be more convenient if

you could be returned to the VB Editor after clicking OK.

C A U T I O N

Figure 25.4
This message appears if
you forget to click Reset
to end a debug session
and then attempt to run
another macro.

551What Happens When an Error Occurs?

Debug Error Inside Userform Code Is Misleading
After you click Debug, the line highlighted as the error can be misleading in one situation.

For example, suppose you call a macro that displays a userform. Somewhere in the userform

code, an error occurs. When you click Debug, instead of showing the problem inside the

userform code, Excel highlights the line in the original macro that displayed the userform.

Follow these steps to find the real error:

 1. After the error message box shown in Figure 25.5 is displayed, click the Debug button.

Figure 25.5
Select Debug in response
to this error 13.

You will see that the error allegedly occurred on a line that shows a userform, as shown

in Figure 25.6. Because you have read this chapter, you know that this is not the line in

error.

Figure 25.6
The line in error is
indicated as the frm-
Choose.Show line.

 2. Press F8 to execute the Show method. Instead of getting an error, you are taken into the

Userform_Initialize procedure.

 3. Keep pressing F8 until you get the error message again. Stay alert because as soon as

you encounter the error, the error message box is displayed. Click Debug and you are

returned to the userform.Show line. It is particularly difficult to follow the code when

the error occurs on the other side of a long loop, as shown in Figure 25.7.

Imagine trying to step through the code in Figure 25.7. You carefully press F8 five times

with no problems through the first pass of the loop. Because the problem could be in future

iterations through the loop, you continue to press F8. If there are 25 items to add to the list

box, 48 more presses of F8 are required to get through the loop safely. Each time before

pressing F8, you should mentally note that you are about to run some specific line.

Chapter 25 Handling Errors552

At the point shown in Figure 25.7, the next press of the F8 key displays the error and

returns you to the frmChoose.Show line back in Module1. This is an annoying situation.

When you click Debug and see that the line in error is a line that displays a userform, you

need to start pressing the F8 key to step into the userform code until you get the error.

Invariably, you will get incredibly bored pressing F8 a million times and forget to pay atten-

tion to which line caused the error. However, as soon as the error happens, you will be

thrown back to the Debug message, which returns you to the frmChoose.Show line of code.

At that point, you need to start pressing F8 again. If you can recall the general area where

the debug error occurred, click the mouse cursor in a line right before that section and use

Ctrl+F8 to run the macro up to the cursor. Alternatively, right-click that line and choose

Run to Cursor.

Basic Error Handling with the On Error GoTo Syntax
The basic error-handling option is to tell VBA that in the case of an error you want to have

code branch to a specific area of the macro. In this area, you might have special code that

alerts users of the problem and enables them to react.

A typical scenario is to add the error-handling routine at the end of the macro. To set up an

error handler, follow these steps:

 1. After the last code line of the macro, insert the code line Exit Sub. This makes sure

that the execution of the macro does not continue into the error handler.

 2. After the Exit Sub line, add a label. A label is a name followed by a colon. For exam-

ple, you might create a label called MyErrorHandler:.

 3. Write the code to handle the error. If you want to return control of the macro to the

line after the one that caused the error, use the statement Resume Next.

Loop

Figure 25.7
With 25 items to add to
the list box, you must
press F8 53 times to get
through this 3-line loop.

553Basic Error Handling with the On Error GoTo Syntax

In your macro, just before the line that may likely cause the error, add a line reading On

Error GoTo MyErrorHandler. Note that in this line, you do not include the colon after the

label name.

Immediately after the line of code that you suspect will cause the error, add code to turn off

the special error handler. Because this is not intuitive, it tends to confuse people. The code

to cancel any special error handling is On Error GoTo 0. There is no label named 0. Instead,

this line is a fictitious line that instructs Excel to go back to the normal state of displaying

the End/Debug error message when an error is encountered. This is why it is important to

cancel the error handling.

Sub HandleAnError()
 Dim MyFile as Variant
 ‘ Set up a special error handler
 On Error GoTo FileNotThere
 Workbooks.Open Filename:=”C:\NotHere.xls”
 ‘ If we get here, cancel the special error handler
 On Error GoTo 0
 MsgBox “The program is complete”

 ‘ The macro is done. Use Exit sub, otherwise the macro
 ‘ execution WILL continue into the error handler
 Exit Sub

 ‘ Set up a name for the Error handler
FileNotThere:
 MyPrompt = “There was an error opening the file. It is possible the “
 MyPrompt = MyPrompt & “ file has been moved. Click OK to browse for the “
 MyPrompt = MyPrompt & “file, or click Cancel to end the program”
 Ans = MsgBox(Prompt:=MyPrompt, VbMsgBoxStyle:=vbOKCancel)
 If Ans = vbCancel Then Exit Sub

 ‘ The client clicked OK. Let him browse for the file
 MyFile = Application.GetOpenFilename
 If MyFile = False Then Exit Sub

 ‘ What if the 2nd file is corrupt? We do not want to recursively throw
 ‘ the client back into this error handler. Just stop the program
 On Error GoTo 0
 Workbooks.Open MyFile
 ‘ If we get here, then return the macro execution back to the original
 ‘ section of the macro, to the line after the one that caused the error.
 Resume Next

End Sub

The following code includes a special error handler to handle the necessary action if the file has been

moved or is missing. You definitely do not want this error handler invoked for another error later in the

macro such as division by zero.

N
O

T
E

Chapter 25 Handling Errors554

Generic Error Handlers
Some developers like to direct any error to a generic error handler to make use of the Err

object. This object has properties for error number and description. You can offer this

information to the client and prevent them from getting a Debug message:

 On Error GoTo HandleAny
 Sheets(9).Select

 Exit Sub

HandleAny:
 Msg = “We encountered “ & Err.Number & “ - “ & Err.Description
 MsgBox Msg
 Exit Sub

Handling Errors by Choosing to Ignore Them
Some errors can simply be ignored. For example, suppose you are going to use the HTML

Creator macro from Chapter 16, “Reading from and Writing to the Web.” Your code erases

any existing index.html file from a folder before writing out the next file.

The Kill (FileName) statement returns an error if FileName does not exist. This probably

is not something about which you need to worry. After all, you are trying to delete the file,

so you probably do not care whether someone already deleted it before running the macro.

In this case, tell Excel to just skip over the offending line and resume macro execution with

the next line. The code to do this is On Error Resume Next:

Sub WriteHTML()
 MyFile = “C:\Index.html”
 On Error Resume Next
 Kill MyFile
 On Error Goto 0
 Open MyFile for Output as #1
 ‘ etc...
End Sub

It is possible to have more than one error handler at the end of a macro. Make sure that each error

handler ends with either Resume Next or Exit Sub so that macro execution does not accidentally move

into the next error handler.
T

IP

Be careful with On Error Resume Next. It can be used selectively in situations where you

know that the error can be ignored. You should immediately return error checking to normal after the

line that might cause an error with On Error GoTo 0.

If you attempt to have On Error Resume Next skip an error that cannot be skipped, the macro

immediately steps out of the current macro. If you have a situation where MacroA calls MacroB and

MacroB encounters a nonskippable error, the program jumps out of MacroB and continues with the

next line in MacroA. This is rarely a good thing.

C A U T I O N

555Generic Error Handlers

When you record a macro and perform a page setup, even if you change just one item in the Page Setup dialog, the macro

recorder records two dozen settings for you. These settings notoriously differ from printer to printer. For example, if you

record the PageSetup on a system with a color printer, it might record a setting for .BlackAndWhite = True. This

setting will fail on another system where the printer does not offer the choice. Your printer may offer a .PrintQuality

= 600 setting. If the client’s printer offers only a 300 resolution setting, this code will fail. For this reason, you should sur-

round the entire PageSetup with On Error Resume Next to ensure that most settings happen but the trivial ones

that fail will not cause a runtime error. Here is how to do this:

 On Error Resume Next
 Application.PrintCommunication = False
 With ActiveSheet.PageSetup
 .PrintTitleRows = “”
 .PrintTitleColumns = “”
 End With
 ActiveSheet.PageSetup.PrintArea = “A1:L27”
 With ActiveSheet.PageSetup
 .LeftHeader = “”
 .CenterHeader = “”
 .RightHeader = “”
 .LeftFooter = “”
 .CenterFooter = “”
 .RightFooter = “”
 .LeftMargin = Application.InchesToPoints(0.25)
 .RightMargin = Application.InchesToPoints(0.25)
 .TopMargin = Application.InchesToPoints(0.75)
 .BottomMargin = Application.InchesToPoints(0.5)
 .HeaderMargin = Application.InchesToPoints(0.5)
 .FooterMargin = Application.InchesToPoints(0.5)
 .PrintHeadings = False
 .PrintGridlines = False
 .PrintComments = xlPrintNoComments
 .PrintQuality = 300
 .CenterHorizontally = False
 .CenterVertically = False
 .Orientation = xlLandscape
 .Draft = False
 .PaperSize = xlPaperLetter
 .FirstPageNumber = xlAutomatic
 .Order = xlDownThenOver
 .BlackAndWhite = False
 .Zoom = False
 .FitToPagesWide = 1
 .FitToPagesTall = False
 .PrintErrors = xlPrintErrorsDisplayed
 End With
 Application.PrintCommunication = True
 On Error GoTo 0

C A S E S T U D Y : P A G E S E T U P P R O B L E M S C A N B E O V E R L O O K E D

Chapter 25 Handling Errors556

Suppressing Excel Warnings
Some messages appear even if you have set Excel to ignore errors. For example, try to

delete a worksheet using code and you will still get the message “Data may exist in the

sheet(s) selected for deletion. If you want to delete the data permanently, click Delete.”

This is annoying. You do not want your clients to have to answer this warning. In fact, this

is not an error but an alert. To suppress all alerts and force Excel to take the default action,

use Application.DisplayAlerts = False:

Sub DeleteSheet()
 Application.DisplayAlerts = False
 Worksheets(“Sheet2”).Delete
 Application.DisplayAlerts = True
End Sub

To see a demo of using DisplayAlerts, search for Excel VBA 25 at YouTube.

Encountering Errors on Purpose
Because programmers hate errors, this concept might seem counterintuitive, but errors are

not always bad. Sometimes it is faster to simply encounter an error.

Suppose, for example, that you want to find out whether the active workbook contains a

worksheet named Data. To find this out without causing an error, you could code this:

DataFound = False
For each ws in ActiveWorkbook.Worksheets
 If ws.Name = “Data” then
 DataFound = True
 Exit For
 End if
Next ws
If not DataFound then Sheets.Add.Name = “Data”

This takes eight lines of code. If your workbook has 128 worksheets, the program would

loop through 128 times before deciding that the data worksheet is missing.

The alternative is to try to reference the data worksheet. If you have error checking set to

resume next, the code runs, and the Err object is assigned a number other than zero:

On Error Resume Next
X = Worksheets(“Data”).Name
If Err.Number <> 0 then Sheets.Add.Name = “Data”
On Error GoTo 0

This code runs much faster. Errors usually make programmers cringe. However, in this case

and in many other cases, the errors are perfectly acceptable.

557Errors While Developing Versus Errors Months Later

Train Your Clients
Suppose you are developing code for a client across the globe or for the administrative

assistant so that he can run the code while you are on vacation. In both cases, you might

find yourself trying to debug code remotely while you are on the telephone with the client.

For this reason, it is important to train clients about the difference between an error and a

simple MsgBox. Even though a MsgBox is a planned message, it still appears out of the blue

with a beep. Teach your users that even though error messages are bad, not everything that

pops up is an error message. For example, I had a client who kept reporting to her boss

that she was getting an error from my program. In reality, she was getting an informational

MsgBox. Both Debug errors and Msgbox messages beep at the user.

When clients get Debug errors, train them to call you while the Debug message is still on

the screen. This allows you to get the error number and description. You also can ask the

client to click Debug and tell you the module name, procedure name, and the line in yel-

low. Armed with this information, you can usually figure out what is going on. Without this

information, it is unlikely that you will be able to resolve the problem. Getting a call from

a client saying that there was a 1004 error is of little help—1004 is a catchall error that can

mean any number of things.

Errors While Developing Versus Errors Months Later
When you have just written code that you are running for the first time, you expect errors.

In fact, you may decide to step through code line by line to watch the progress of the code

the first time through.

It is another thing to have a program that has been running daily in production suddenly

stop working because of an error. This can be perplexing. The code has been working for

months. Why did it suddenly stop working today?

It is easy to blame the client. However, when you get right down to it, it is really the fault

of developers for not considering the possibilities.

The following sections describe a couple of common problems that can strike an applica-

tion months later.

Runtime Error 9: Subscript Out of Range
You set up an application for a client and you provided a Menu worksheet where some set-

tings are stored. Then one day this client reports the error message shown in Figure 25.8.

Chapter 25 Handling Errors558

Your code expected there to be a worksheet named Menu. For some reason, the client

either accidentally deleted the worksheet or renamed it. As soon as you tried to select the

sheet, you received an error:

Sub GetSettings()
 ThisWorkbook.Worksheets(“Menu”).Select
 x = Range(“A1”).Value
End Sub

Figure 25.8
The Runtime Error 9 is
often caused when you
expect a worksheet to
be there and it has been
deleted or renamed by
the client.

This is a classic situation where you cannot believe the client would do something so crazy.

After you have been burned by this one a few times, you might go to these lengths to pre-

vent an unhandled Debug error:

Sub GetSettings()
 On Error Resume Next
 x = ThisWorkbook.Worksheets(“Menu”).Name
 If Not Err.Number = 0 Then
 MsgBox “Expected to find a Menu worksheet, but it is missing”
 Exit Sub
 End If
 On Error GoTo 0

 ThisWorkbook.Worksheets(“Menu”).Select
 x = Range(“A1”).Value
End Sub

RunTime Error 1004: Method Range of Object Global Failed
You have code that imports a text file each day. You expect the text file to end with a Total

row. After importing the text, you want to convert all the detail rows to italics.

The following code works fine for months:

Sub SetReportInItalics()
 TotalRow = Cells(Rows.Count,1).End(xlUp).Row
 FinalRow = TotalRow - 1
 Range(“A1:A” & FinalRow).Font.Italic = True
End Sub

Then one day, the client calls with the error message shown in Figure 25.9.

Upon examination of the code, you discover that something bizarre went wrong when

the text file was transferred via FTP to the client that day. The text file ended up as an

559The Ills of Protecting Code

empty file. Because the worksheet was empty, TotalRow was determined to be Row 1. If you

assume the last detail row was TotalRow – 1, the code is set up to attempt to format Row 0,

which clearly does not exist.

After an episode like this, you will find yourself writing code that preemptively looks for

this situation:

Sub SetReportInItalics()
 TotalRow = Cells(Rows.Count,1).End(xlUp).Row
 FinalRow = TotalRow - 1
 If FinalRow > 0 Then
 Range(“A1:A” & FinalRow).Font.Italic = True
 Else
 MsgBox “It appears the file is empty today. Check the FTP process”
 End If
End Sub

The Ills of Protecting Code
It is possible to lock a VBA project so that it cannot be viewed. However, this is not recom-

mend. When code is protected and an error is encountered, your user is presented with an

error message but no opportunity to debug. The Debug button is there, but it is grayed

out. This is useless in helping you discover the problem.

Further, the Excel VBA protection scheme is horribly easy to break. Programmers in

Estonia offer $40 software that lets you unlock any project. For this reason, you need to

understand that office VBA code is not secure and get over it.

Figure 12.9
The Runtime Error 1004
can be caused by a num-
ber of things.

Chapter 25 Handling Errors560

The password-hacking schemes were very easy in Excel 97 and Excel 2000. The password-cracking software could immedi-

ately locate the actual password in the VBA project and report it to the software user.

Then, in Excel 2002, Microsoft offered a brilliant protection scheme that temporarily appeared to foil the password-crack-

ing utilities. The password was tightly encrypted. For several months after the release of Excel 2002, password-cracking

programs had to try brute-force combinations. The software could crack a password like blue in 10 minutes. However,

given a 24-character password such as *A6%kJJ542(9$GgU44#2drt8, the program would take 20 hours to find the pass-

word. This was a fun annoyance to foist upon other VBA programmers who would potentially break into your code.

However, the next version of the password-cracking software was able to break a 24-character password in Excel 2002 in

about 2 seconds. When I tested my 24-character password-protected project, the password utility quickly told me that my

password was XVII. I thought this was certainly wrong, but after testing, I found the project had a new password of XVII.

Yes, this latest version of the software resorted to another approach. Instead of using brute force to crack the password, it

simply wrote a new random four-character password to the project and saved the file.

Now, this causes an embarrassing problem for whoever cracked the password. The developer has a sign on his wall

reminding him the password is *A6%kJJ542(9$GgU44#2drt8. However, in the cracked version of the file, the password is

now XVII. If there is a problem with the cracked file and it is sent back to the developer, the developer can no longer open

the file. The only person getting anything from this is the programmer in Estonia who wrote the cracking software.

There are not enough Excel VBA developers in the world, and there are more projects than there are programmers. In my

circle of developer friends, we acknowledge that business prospects slip through the cracks because we are too busy with

other customers.

Therefore, the situation of a newbie developer is common. This new developer does an adequate job of writing code for a

customer and then locks the VBA project.

The customer needs some changes. The original developer does the work. A few weeks later, the developer delivers some

requested changes. A month later, the customer needs more work. Either the developer is busy with other projects or he

has underpriced these maintenance jobs and has more lucrative work. The client tries to contact the programmer a few

times before realizing he needs to get the project fixed, so he calls another developer—you!

You get the code. It is protected. You break the password and see who wrote the code. This is a tough call. You have no

interest in stealing the new developer’s customer. In fact, you prefer to do this one job and then have the customer return

to the original developer. However, because of the password hacking, you have created a situation where the two develop-

ers have different passwords. Your only choice is to remove the password entirely. This will tip off the other developer that

someone else has been in his or her code. Maybe you could try to placate the other developer with a few lines of comment

that the password was removed after the customer could not contact the original developer.

C A S E S T U D Y : P A S S W O R D C R A C K I N G

More Problems with Passwords
The password scheme for any version of Excel from 2002 forward is incompatible with

Excel 97. If you protected code in Excel 2002, you cannot unlock the project in Excel 97.

Many people are still using Excel 97. As your application is given to more employees in

561Errors Caused by Different Versions

a company, you will invariably find an employee using Excel 97. Of course, that user will

come up with a runtime error. However, if you locked the project in Excel 2002 or newer,

you will not be able to unlock the project in Excel 97, which means that you cannot debug

the program in Excel 97.

Bottom line: Locking code causes more trouble than it is worth.

If you are using a combination of Excel 2003, Excel 2007, and Excel 2010, the passwords transfer easily

back and forth. This holds true even if the file is saved as an XLSM file and opened in Excel 2003 using

the file converter. You can change code in Excel 2003, save the file, and successfully round-trip back to

Excel 2010.

N
O

T
E

Errors Caused by Different Versions
Microsoft improves VBA in every version of Excel. Pivot table creation was improved dra-

matically between Excel 97 and Excel 2000. Sparklines and slicers are new in Excel 2010.

Certain chart features were improved between Excel 97 and Excel 2000, and charting was

completely rewritten in Excel 2007. Excel started supporting XML in Excel 2003 and

stopped supporting interactivity in saved web pages in Excel 2007.

The TrailingMinusNumbers parameter was new in Excel 2002. This means that if you write

code in Excel 2010 and then send the code to a client with Excel 2000, that user will get

a compile error as soon as she tries to run any code in the same module as the offending

code. For this reason, you need to consider this application in two modules.

Module1 has macros ProcA, ProcB, and ProcC. Module2 has macros ProcD and ProcE. It

happens that ProcE has an ImportText method with the TrailingMinusNumbers parameter.

The client can run ProcA and ProcB on the Excel 2000 machine without problem. As

soon as she tries to run ProcD, she will get a compile error reported in ProcD because

Excel tries to compile all of Module2 when she tries to run code in that module. This can

be incredibly misleading: An error being reported when the client runs ProcD is actually

caused by an error in ProcE.

One solution is to have access to every supported version of Excel, plus Excel 97, and

test the code in all versions. Note that Excel 97 SR-2 was far more stable than the initial

releases of Excel 97. Even though many clients are hanging on to Excel 97, it is frustrating

when you find someone who does not have the stable service release.

Macintosh users will believe that their version of Excel is the same as the Excel for

Windows. Microsoft promised compatibility of files, but that promise ends in the Excel

user interface. VBA code is not compatible between Windows and the Mac. Excel VBA on

the Mac in Excel 2004 is close to Excel 97 VBA but annoyingly different. Excel 2008 for

the Mac uses AppleScript instead of supporting VBA. However, VBA will be back in the

next version of Excel for the Mac. For this reason, anything you do with the Windows API

is not going to work on a Mac.

Out with the Old, In with the New
If you have been working with a legacy version of

Excel, one of the first changes you notice when you

open Excel 2010 is the Ribbon toolbar that was

introduced in Excel 2007. Gone are the menus and

toolbars of old. And this change isn’t just visual—

the method of modifying custom menu controls

was changed just as radically. One of the biggest

bonuses of the Ribbon is that you no longer have to

worry about your custom toolbar sticking around

after the workbook is closed because the custom

toolbar is now part of the inner workings of the

workbook.

The original CommandBars object still works, but

the customized menus and toolbars are all placed

on the Add-ins tab. If you had custom menu com-

mands, they will appear on the Menu Commands

group, as shown in Figure 26.1. In Figure 26.2,

the custom toolbars from two different workbooks

appear together on the Custom Toolbars group.

If you want to modify the Ribbon and add your

own tab, you need to modify the Excel file itself,

which isn’t as impossible as it sounds. The new

Excel file is actually a zipped file, containing vari-

ous files and folders. All you need to do is unzip it,

make your changes, and you’re done. Okay, it’s not

that simple—a few more steps are involved—but it’s

not impossible.

Before we begin, go to the File tab and select

Options, Advanced, General, and select Show

Add-In User Interface Errors. This will allow error

messages to appear so that you can troubleshoot

errors in your custom toolbar.

 See the “Troubleshooting Error Messages” section, p. 577, for more details.

Customizing the Ribbon to
Run Macros

26

Chapter 26 Customizing the Ribbon to Run Macros564

Figure 26.1
Legacy version custom
menus will be grouped
together under the Menu
Commands group.

Figure 26.2
Custom toolbars from
legacy versions of Excel
appear in the Custom
Toolbars group.

Unlike programming in the VB Editor, you won’t have any assistance with automatic correction of letter

case, and the XML code, which is what the ribbon code is, is very particular. Note the case of the XML-

specific words, such as id—using ID will generate an error.

C A U T I O N

Where to Add Your Code: customui Folder and File
Create a folder called customui. This folder will contain the elements of your custom

Ribbon tab. Within the folder, create a text file and call it customUI14.xml, as shown in

Figure 26.3. Open the XML file in a text editor; either Notepad or WordPad will work.

Figure 26.3
Create a
customuUI14.xml
file within a customui
folder.

Insert the basic structure for the XML code, shown here, into your XML file. For every

opening tag grouping, such as <ribbon>, there must be a closing tag, </ribbon>:

<customUI xmlns=”http://schemas.microsoft.com/office/2009/07/customui”>
 <ribbon startFromScratch=”false”>
 <tabs>

 <!-- your ribbon controls here -->

565Creating the Tab and Group

 </tabs>
 </ribbon>
</customUI>

startFromScratch is optional with a default value of false. It’s how you tell the code the

other tabs in Excel will not be shown, only yours. True means to show only your tab; false

means to show your tab and all the other tabs.

The <!-- your ribbon controls here --> you see in the previous code is commented

text. Just enter your comments between <!-- and -->, and the program will ignore the line

when it runs.

Creating the Tab and Group
Before you can add a control to a tab, you need to identify the tab and group. A tab can

hold many different controls on it, which you can group together, like the Font group on

the Home tab, as shown in Figure 26.4.

Note the case of the letters in startFromScratch—the small s at the beginning followed by the

capital F in From and capital S in Scratch. It is crucial you do not deviate from this.

C A U T I O N

We’ll name our tab MrExcel Add-ins and add a group called Reports to it, as shown in

Figure 26.5:

<customUI xmlns=”http://schemas.microsoft.com/office/2009/07/customui”>
 <ribbon startFromScratch=”false”>
 <tabs>
 <tab id=”CustomTab” label=”MrExcel Add-ins”>
 <group id=”CustomGroup” label=”Reports”>

 <!-- your ribbon controls here -->

 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

Figure 26.4
Individual controls are
placed in groups on a tab.
A tab may contain several
such groups.

Chapter 26 Customizing the Ribbon to Run Macros566

The id is a unique identifier for the control (in this case, the tab and group). The label is

the text you want to appear on your ribbon for the specified control.

Adding a Control to Your Ribbon
After you’ve set up the ribbon and group, you can add controls. Depending on the type of

control, there are different attributes you can include in your XML code. (Refer to Table

26.1 for more information on various controls and their attributes.)

The following code adds a normal-sized button to the Reports group, set to run the sub

called HelloWorld when the button is clicked (see Figure 26.6):

<customUI xmlns=”http://schemas.microsoft.com/office/2009/07/customui”>
 <ribbon startFromScratch=”false”>
 <tabs>
 <tab id=”CustomTab” label=”MrExcel Add-ins”>
 <group id=”CustomGroup” label=”Reports”>

 <button id=”button1” label=”Click to run”
 onAction=”Module1.HelloWorld” size=”normal” />

 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

The id is a unique identifier for the control button. The label is the text you want to

appear on your button. Size is the size of the button. normal is the default value, and the

other option is large. onAction is the sub, HelloWorld, to call when the button is clicked.

The sub, shown here, goes in a standard module, Module1, in the workbook:

Sub HelloWorld(control As IRibbonControl)
MsgBox “Hello World”
End Sub

Notice the argument control As IRibbonControl. This is the standard argument for a sub

called by a button control using the onAction attribute. Refer to Table 26.2 for the required

arguments for other attributes and controls.

Figure 26.5
Add Tab and Group tags
to your code to create a
custom tab and group.

Figure 26.6
Run a program with a
click of a button on your
custom ribbon.

567Adding a Control to Your Ribbon

Table 26.1 Ribbon Control Attributes

Attribute Type or Value Description

description String Specifies description text displayed in menus when the item-
Size attribute is set to Large

enabled true, false Specifies whether the control is enabled

getContent Callback Retrieves XML content that describes a dynamic menu

getDescription Callback Gets the description of a control

getEnabled Callback Gets the enabled state of a control

getImage Callback Gets the image for a control

getImageMso Callback Gets a built-in control’s icon by using the control ID

getItemCount Callback Gets the number of items to be displayed in a combo box,
drop-down list, or gallery

getItemID Callback Gets the ID for a specific item in a combo box, drop-down
list, or gallery

getItemImage Callback Gets the image of a combo box, drop-down list, or gallery

getItemLabel Callback Gets the label of a combo box, drop-down list, or gallery

getItemScreentip Callback Gets the ScreenTip for a a combo box, drop-down list, or
gallery

getItemSupertip Callback Gets the Enhanced ScreenTip for a combo box, drop-down
list, or gallery

getKeytip Callback Gets the KeyTip for a control

getLabel Callback Gets the label for a control

getPressed Callback Gets a value that indicates whether a toggle button is pressed
or not pressed

Gets a value that indicates whether a check box is selected or
cleared

getScreentip Callback Gets the ScreenTip for a control

getSelectedItemID Callback Gets the ID of the selected item in a drop-down list or gallery

getSelectedItemIndex Callback Gets the index of the selected item in a drop-down list or
gallery

getShowImage Callback Gets a value specifying whether to display the control image

getShowLabel Callback Gets a value specifying whether to display the control label

getSize Callback Gets a value specifying the size of a control (normal or large)

getSupertip Callback Gets a value specifying the Enhanced ScreenTip for a control

getText Callback Gets the text to be displayed in the edit portion of a text box
or edit box

getTitle Callback Gets the text to be displayed (rather than a horizontal line)
for a menu separator

getVisible Callback Gets a value that specifies whether the control is visible

Chapter 26 Customizing the Ribbon to Run Macros568

Attribute Type or Value Description

id String A user-defined unique identifier for the control (mutually exclu-
sive with idMso and idQ—specify only one of these values)

idMso Control id Built-in control ID (mutually exclusive with id and idQ—
specify only one of these values)

idQ Qualified id Qualified control ID, prefixed with a namespace identifier
(mutually exclusive with id and idMso—specify only one of
these values)

image String Specifies an image for the control

imageMso Control id Specifies an identifier for a built-in image

insertAfterMso Control id Specifies the identifier for the built-in control after which to
position this control

insertAfterQ Qualified id Specifies the identifier of a control whose idQ property was
specified after which to position this control

insertBeforeMso Control id Specifies the identifier for the built-in control before which to
position this control

insertBeforeQ Qualified id Specifies the identifier of a control whose idQ property was
specified before which to position this control

itemSize large, normal Specifies the size for the items in a menu

keytip String Specifies the KeyTip for the control

label String Specifies the label for the control

onAction Callback Called when the user clicks the control

onChange Callback Called when the user enters or selects text in an edit box or
combo box

screentip String Specifies the control’s ScreenTip

showImage true, false Specifies whether the control’s image is shown

showItemImage true, false Specifies whether to show the image in a combo box, drop-
down list, or gallery

showItemLabel true, false Specifies whether to show the label in a combo box, drop-
down list, or gallery

showLabel true, false Specifies whether the control’s label is shown

size large, normal Specifies the size for the control

sizeString String Indicates the width for the control by specifying a string, such
as “xxxxxx”

supertip String Specifies the Enhanced ScreenTip for the control

tag String Specifies user-defined text

title String Specifies the text to be displayed, rather than a horizontal
line, for a menu separator

visible true, false Specifies whether the control is visible

Table 26.1 Continued

569Adding a Control to Your Ribbon

Table 26.2 Control Arguments

Control Callback Name Signature

Various
controls

getDescription

getEnabled

getImage

getImageMso

getLabel

getKeytip

getSize

getScreentip

getSupertip

getVisible

Sub GetDescription(control as IRibbonControl,
ByRef description)

Sub GetEnabled(control As IRibbonControl, ByRef
enabled)

Sub GetImage(control As IRibbonControl, ByRef
image)

Sub GetImageMso(control As IRibbonControl, ByRef
imageMso)

Sub GetLabel(control As IRibbonControl, ByRef
label)

Sub GetKeytip (control As IRibbonControl, ByRef
label)

sub GetSize(control As IRibbonControl, ByRef
size)

Sub GetScreentip(control As IRibbonControl, ByRef
screentip)

Sub GetSupertip(control As IRibbonControl, ByRef
screentip)

Sub GetVisible(control As IRibbonControl, ByRef
visible)

button getShowImage

getShowLabel

onAction

Sub GetShowImage (control As IRibbonControl,
ByRef showImage)

Sub GetShowLabel (control As IRibbonControl,
ByRef showLabel)

Sub OnAction(control As IRibbonControl)

checkBox getPressed onAction Sub GetPressed(control As IRibbonControl, ByRef
returnValue)

Sub OnAction(control As IRibbonControl, pressed
As Boolean)

comboBox getItemCount

getItemID

getItemImage

getItemLabel

getItemScreenTip

getItemSuperTip

getText

onChange

Sub GetItemCount(control As IRibbonControl, ByRef
count)

Sub GetItemID(control As IRibbonControl, index As
Integer, ByRef id)

Sub GetItemImage(control As IRibbonControl, index
As Integer, ByRef image)

Sub GetItemLabel(control As IRibbonControl, index
As Integer, ByRef label)

Sub GetItemScreenTip(control As IRibbonControl,
index As Integer, ByRef screentip)

Sub GetItemSuperTip (control As IRibbonControl,
index As Integer, ByRef supertip)

Sub GetText(control As IRibbonControl, ByRef
text)

Sub OnChange(control As IRibbonControl, text As
String)

Chapter 26 Customizing the Ribbon to Run Macros570

Control Callback Name Signature

customUI loadImage

onLoad

Sub LoadImage(imageId As string, ByRef image)

Sub OnLoad(ribbon As IRibbonUI)

dropDown getItemCount

getItemID

getItemImage

Sub GetItemCount(control As IRibbonControl, ByRef
count)

Sub GetItemID(control As IRibbonControl, index As
Integer, ByRef id)

Sub GetItemImage(control As IRibbonControl, index
As Integer, ByRef image)

dropDown getItemLabel

getItemScreenTip

getItemSuperTip

getSelectedItemID

getSelectedItemIndex

onAction

Sub GetItemLabel(control As IRibbonControl, index
As Integer, ByRef label)

Sub GetItemScreenTip(control As IRibbonControl,
index As Integer, ByRef screenTip)

Sub GetItemSuperTip (control As IRibbonControl,
index As Integer, ByRef superTip)

Sub GetSelectedItemID(control As IRibbonControl,
ByRef index)

Sub GetSelectedItemIndex(control As
IRibbonControl, ByRef index)

Sub OnAction(control As IRibbonControl, selectedId
As String, selectedIndex As Integer)

dynamicMen getContent Sub GetContent(control As IRibbonControl, ByRef
content)

editBox getText

onChange

Sub GetText(control As IRibbonControl, ByRef text)

Sub OnChange(control As IRibbonControl, text As
String)

gallery getItemCount

getItemHeight

getItemID

getItemImage

getItemLabel

getItemScreenTip

getItemSuperTip

getItemWidth

getSelectedItemID

getSelectedItemIndex

onAction

Sub GetItemCount(control As IRibbonControl, ByRef
count)

Sub getItemHeight(control As IRibbonControl, ByRef
height)

Sub GetItemID(control As IRibbonControl, index As
Integer, ByRef id)

Sub GetItemImage(control As IRibbonControl, index
As Integer, ByRef image)

Sub GetItemLabel(control As IRibbonControl, index
As Integer, ByRef label)

Sub GetItemScreenTip(control As IRibbonControl,
index as Integer, ByRef screen)

Sub GetItemSuperTip (control As IRibbonControl,
index as Integer, ByRef screen)

Sub getItemWidth(control As IRibbonControl, ByRef
width)

Sub GetSelectedItemID(control As IRibbonControl,
ByRef index)

Sub GetSelectedItemIndex(control As
IRibbonControl, ByRef index)

Sub OnAction(control As IRibbonControl, selectedId
As String, selectedIndex As Integer)

Table 26.2 Continued

571Understanding the RELS File

Control Callback Name Signature

menuSeparator getTitle Sub GetTitle (control As IRibbonControl, ByRef
title)

toggleButton getPressed

onAction

Sub GetPressed(control As IRibbonControl, ByRef
returnValue)

Sub OnAction(control As IRibbonControl, pressed
As Boolean)

Accessing the File Structure
The new Excel file types are actually zipped files containing various files and folders to

create the workbook and worksheets you see when you open the workbook. To view this

structure, rename the file, adding a .zip extension to the end of the filename. For example,

if your filename is Chapter 26 – Simple Ribbon.xlsm, rename it to Chapter 26 – Simple

Ribbon.xlsm.zip. You can then use your zip utility to access the folders and files within.

Copy into the zip file your customui folder and file, as shown in Figure 26.7. After placing

them in the XLSM file, we need to let the rest of the Excel file know that they are there

and what their purpose is. To do that, we modify the RELS file.

Figure 26.7
Using a zip utility, open
the XLSM file and copy
over the customui folder
and file.

Understanding the RELS File
The RELS file, found in the _rels folder, contains the various relationships of the Excel file.

Extract this file from the zip and open it using a text editor.

The file already contains existing relationships that we do not want to change. Instead,

we need to add one for the customui folder. Scroll all the way to the right of the

<Relationships line and place your cursor before the </Relationships> tag, as shown in

Figure 26.8. Insert the following syntax:

<Relationship Id=”rAB67989” _
Type=”http://schemas.microsoft.com/office/2007/relationships/ui/_
extensibility”Target=”customui/customUI14.xml”/>

Chapter 26 Customizing the Ribbon to Run Macros572

Id is any unique string to identify the relationship. If Excel has a problem with the string

you enter, it may change it when you open the file. Target is the customui folder and file.

Save your changes and add the RELS file back into the zip file.

 See the troubleshooting section, “Excel Found Unreadable Content,” p. 579, for more information.

Renaming the Excel File and Opening the Workbook
Rename the Excel file back to its original name by removing the .zip extension. Open your

workbook.

 If any error messages appear when you rename an Excel file, see “Troubleshooting Error Messages,” p. 577.

Custom UI Editor Tool
It can be a little time-consuming to perform all the steps involved in adding a custom rib-

bon, especially if you make little mistakes and have to keep renaming your workbook, open-

ing the zip file, extracting your file, modifying, adding it back to the zip, renaming, and

testing. To aid in this, OpenXMLDeveloper.org offers the Custom UI Editor Tool, which

you can learn more about at http://openxmldeveloper.org/articles/CustomUIeditor.aspx.

It also updates the RELS file, helps with using custom images, and has other useful aids to

customizing the ribbon.

Using Images on Buttons
The image that appears on a button can be either an image from the Microsoft Office icon

library or a custom image you create and include within the workbook’s customui folder.

Figure 26.8
Place your cursor in the
correct spot for entering
your custom ribbon rela-
tionship.

Even though the previous code appears as three lines in this book, it should appear as a single line in

the RELS file. If you want to enter it as three separate lines, do not separate the lines within the quoted

strings. The preceding examples are correct breaks. An incorrect break of the third line, for example,

would be this:

Target = “customui/
customUI14.xml”

Note that Excel will merge these three separate lines into one, when the workbook is opened.

C A U T I O N

http://openxmldeveloper.org/articles/CustomUIeditor.aspx

573Using Images on Buttons

With a good icon image, you can hide the button label but still have a friendly ribbon with

images that are self-explanatory.

Microsoft Office Icons
Remember in legacy versions of Excel if you wanted to reuse an icon from an Excel button,

you had to identify the faceid? It was a nightmare to do manually, though thankfully there

were many tools out there to help you retrieve the information. Well, Microsoft must have

heard the screams of agony because they’ve made it so much easier to reuse their icons. Not

only that, instead of some meaningless number, they’ve provided easy-to-understand text!

Select File, Options, Customize Ribbon. Place your cursor over any menu command in the

list, and a ScreenTip will appear, providing more information about the command. Included

at the very end in parentheses is the image name, as shown in Figure 26.9.

Figure 26.9
Placing your cursor
over a command, such
as Insert Hyperlink,
brings up the icon name,
HyperlinkInsert.

To place an image on our button, we need to go back into the customUI14.xml file and

advise Excel of what we want. The following code uses the HyperlinkInsert icon for the

HelloWorld button and also hides the label, as shown in Figure 26.10. Note that the icon

name is case sensitive:

<customUI xmlns=”http://schemas.microsoft.com/office/2009/07/customui”>
 <ribbon startFromScratch=”false”>
 <tabs>
 <tab id=”CustomTab” label=”MrExcel Add-ins”>
 <group id=”CustomGroup” label=”Reports”>

 <button id=”button1” label=”Click to run”
 onAction=”Module1.HelloWorld” imageMso=”HyperlinkInsert”

Chapter 26 Customizing the Ribbon to Run Macros574

 showLabel = “false” />

 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

Custom Icon Images
What if the icon library just doesn’t have the icon you’re looking for? You can create your

own image file and modify the ribbon to use it:

 1. Create a folder called images in the customui folder. Place your image in this folder.

 2. Create a folder called _rels in the customui folder. Create a text file called customUI14.

xml.rels in this new folder, as shown in Figure 26.11. Place the following code in the

file. Note the Id for the image relationship is the name of the image file, mrexcellogo:

 <?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
 <Relationships xmlns=”http://schemas.openxmlformats.org/package/2006/_
relationships”><Relationship Id=”mrexcellogo”_
Type=http://schemas.openxmlformats.org/officeDocument/2006/relationships/image_
Target=”images/mrexcellogo.jpg”/></Relationships>

Figure 26.10
You can apply the image
from any Microsoft Office
icon to your custom
button.

T
IP

Figure 26.11
Create a _rels and an
images folder within the
customui folder to hold
files relevant to your
custom image.

You aren’t limited to just the icons available in Excel. You can use the icon for any installed Microsoft Office

application. You can download a workbook from Microsoft with several galleries showing the icons avail-

able (and their names) from http://www.microsoft.com/downloads/details.aspx?familyid=12b99325-

93e8-4ed4-8385-74d0f7661318.

http://www.microsoft.com/downloads/details.aspx?familyid=12b99325-93e8-4ed4-8385-74d0f7661318
http://www.microsoft.com/downloads/details.aspx?familyid=12b99325-93e8-4ed4-8385-74d0f7661318

575Using Images on Buttons

 3. Open the customUI14.xml file and add the image attribute to the control, as shown

here. Save and close the file:

<customUI xmlns=”http://schemas.microsoft.com/office/2009/07/customui”>
 <ribbon startFromScratch=”false”>
 <tabs>
 <tab id=”CustomTab” label=”MrExcel Add-ins”>
 <group id=”CustomGroup” label=”Reports”>

 <button id=”button1” label=”Click to run”
 onAction=”Module1.HelloWorld” image=”mrexcellogo”
 size=”large” />

 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

 4. Open the [Content_Types].xml file and add the following at the very end of the file but

before the </Types>:

<Default Extension=”jpg” ContentType=”application/octet-stream”/>

 5. Save your changes, rename your folder, and open your workbook. The custom image

appears on the button, as shown in Figure 26.12.

Figure 26.12
With a few more changes
to your customui, you can
add a custom image to a
button.

You have a workbook and custom toolbar designed in Excel 2003 with several buttons. You’re now ready to transfer over

to Excel 2010. When you open the workbook in 2010, the toolbar doesn’t appear on the Add-ins tab because the toolbar

wasn’t designed with VBA; it is a manually created custom toolbar.

After saving the workbook as an XLSM file, create the customUI14.xml file, as shown here. The tab is called My

Quick Macros, and it has two groups: Viewing Options and Shortcuts:

<customUI xmlns=”http://schemas.microsoft.com/office/2009/07/customui”>
 <ribbon startFromScratch=”false”>
 <tabs>
 <tab id=”customMacros” label=”My Quick Macros”>
 <group id=”customview” label=”Viewing Options”>

 <button id=”btn_r1c1” label=”Toggle R1c1”
 onAction=”mod_2010.myButtons” />

C A S E S T U D Y : C O N V E R T I N G A N E X C E L 2 0 0 3 C U S T O M T O O L B A R T O
E X C E L 2 0 1 0

Chapter 26 Customizing the Ribbon to Run Macros576

 <button id=”btn_Headings” label=”Show Headings.”
 onAction=”mod_2010.myButtons” imageMso = “TableStyleClear”/>

 <button id=”btn_gridlines” label=”Show Gridlines”
 onAction=”mod_2010.myButtons” imageMso = “BordersAll”/>

 <button id=”btn_tabs” label=”Show Tabs”
 onAction=”mod_2010.myButtons” imageMso = “Connections”/>
 </group>

 <group id=”customshortcuts” label=”Shortcuts”>

 <button id=”btn_formulas” label=”Highlight Formulas”
 onAction=”mod_2010.myButtons” imageMso = “FunctionWizard”/>
 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

After updating the RELS file, open the workbook to see the new tab, as shown in Figure 26.13.

 See the “Understanding the RELS File” section, p. 571, to review how to update an RELS file.

Now it’s time to update the code in the workbook. You’ll notice the onAction in the customui folder all pointed to the

same sub, mod_2010.myButtons, instead of each having a custom call. Because all the controls are of the same type,

buttons and have the same argument type, iRibbonControl, we can take advantage of these facts. Create a single sub,

myButtons, in a module called mod_2010 to handle all the button calls using Select Case to manage the IDs of

each button:

Sub myButtons(control As IRibbonControl)
Select Case control.ID
 Case Is = “btn_r1c1”
 SwitchR1C1
 Case Is = “btn_Headings”
 ShowHeaders
 Case Is = “btn_gridlines”
 ShowGridlines
 Case Is = “btn_tabs”
 ShowTabs
 Case Is = “btn_formulas”
 GoToFormulas
 End Select
End Sub

Figure 26.13
Re-create your Excel 2003
toolbar in Excel 2010 as
its own ribbon.

577Troubleshooting Error Messages

Troubleshooting Error Messages
To be able to see the error messages generated by a custom ribbon, go to File, Options,

Advanced, General, and select the Show Add-in User Interface Errors option, as shown in

Figure 26.14.

The control.IDs are the ids assigned each button in the customUI14.xml file. The action within each Case

statement is a call to the desired sub. Here is a sample of one of the subs being called, ShowHeaders. It is the same sub

that was in the original 2003 workbook:

Sub ShowHeaders()
If ActiveWindow.DisplayHeadings = False Then
 ActiveWindow.DisplayHeadings = True
Else
 ActiveWindow.DisplayHeadings = False
End If
End Sub

Figure 26.14
Select the Show Add-in
User Interface Errors
option to allow custom
ribbon error messages
to appear and aid you in
troubleshooting.

The Attribute “Attribute Name” on the Element “customui Ribbon” Is Not Defined
in the DTD/Schema

As noted in the “Where to Add Your Code: customui Folder and File” section of this

chapter, the case of the attributes is very particular. If an attribute is “mis-cased,” the error

Chapter 26 Customizing the Ribbon to Run Macros578

shown in Figure 26.15 may occur. The code in the customUI14.xml that generated the error

had the following line:

<ribbon startfromscratch=”false”>

Instead of startFromScratch, the code contained startfromscratch (all lowercase letters).

The error message even helps you narrow down the problem by naming the attribute with

which it has a problem.

Figure 26.15
Mis-cased attributes can
generate errors. Read the
error message carefully; it
might help you trace the
problem.

Illegal Qualified Name Character
For every opening <, you need a closing >. If you forget a closing >, the error shown in

Figure 26.16 may appear. The error message is not specific at all, but it does provide a line

and column number where it’s having a problem. Still, it’s not the actual spot where the

missing > would go. Instead, it’s the beginning of the next line. You’ll have to review your

code to find the error, but you have an idea of where to start. The following code in the
customUI14.xml generated the error:

<tab id=”CustomTab” label=”MrExcel Add-ins”>
 <group id=”CustomGroup” label=”Reports”
 <button id=”button1” label=”Click to run”
 onAction=”Module1.HelloWorld” image=”mrexcellogo”
 size=”large” />

Note the missing > for the group line (second line of code). The line should have been this:

<group id=”CustomGroup” label=”Reports”>

Figure 26.16
For every opening <, you
need a closing >.

Element “customui Tag Name” Is Unexpected According to Content Model of
Parent Element “customui Tag Name”

If your structure is in the wrong order, such as the group tag placed before the tab tag as

shown here, a chain of errors will appear, beginning with the one shown in Figure 26.17:

<group id=”CustomGroup” label=”Reports”>
 <tab id=”CustomTab” label=”MrExcel Add-ins”>

579Troubleshooting Error Messages

Excel Found Unreadable Content
Figure 26.18 shows a generic catchall message for different types of problems Excel can

find. If you click Yes, you then receive the message shown in Figure 26.19. If you click No,

the workbook doesn’t open. While creating ribbons, though, I found it appearing most

often when Excel didn’t like the relationship id I had assigned the customui relationship in

the RELS file. What’s nice is that if you click Yes, Excel will assign a new ID file, and the

next time you open the file, the error should not appear.

Original relationship:

<Relationship Id=”rId3”
Type=http://schemas.microsoft.com/office/2007/relationships/ui/extensibility
Target=”customui/customUI14.xml”/>

Excel modified relationship:

<Relationship Id=”rE1FA1CF0-6CA9-499E-9217-90BF2D86492F”
 Type=”http://schemas.microsoft.com/office/2007/relationships/ui/extensibility”
 Target=”customui/customuUI14.xml”/>

In the RELS file, the error also appears if you split the relationship line within a quoted

string. You may recall that you were cautioned against this in the “Understanding the

RELS File” section, earlier in this chapter. In this case, Excel will not fix the file, and you

must make the correction yourself.

Figure 26.17
An error in one line can
lead to string of error
messages because the
other lines are now con-
sidered out of order.

Figure 26.18
This rather generic mes-
sage could appear for
many reasons. Click Yes to
try to repair the file.

Figure 26.19
Excel will let you know
if it has succeeded in
repairing the file.

Chapter 26 Customizing the Ribbon to Run Macros580

Wrong Number of Arguments or Invalid Property Assignment
If there is a problem with the sub being called by your control, you might see the error in

Figure 26.20 when you go to your ribbon. For example, the onAction of a button requires a

single IRibbonControl argument such as the following:

Sub HelloWorld(control As IRibbonControl)

It would be incorrect to leave off the argument, as shown here:

Sub HelloWorld()

Figure 26.20
It’s important the subs
being called by your
controls have the proper
arguments. Refer to Table
26.2 for the various con-
trol arguments.

Nothing Happens
If you open your modified workbook, and your ribbon doesn’t appear, but you don’t get any

error messages, double-check your RELS file. It’s possible you forgot to update it with the

required relationship to your custumUI14.xml.

Other Ways to Run a Macro
Custom ribbons are the best ways to run a macro; however, if you have only a couple of

macros to run, it can be a bit of work to modify the file. You could have the client invoke

a macro by going to the View tab, selecting Macros, View Macros, and then selecting the

macro from the Macros dialog and clicking the Run button, but this is a bit unprofes-

sional—and tedious. Other options are discussed in the following sections.

Keyboard Shortcut
The easiest way to run a macro is to assign a keyboard shortcut to a macro. From the

Macro dialog box (Developer or View tab, click Macros, or press Alt+F8), select the macro

and click Options. Assign a shortcut key to the macro. Figure 26.21 shows the shortcut

Ctrl+Shift+C being assigned to the Clean1stCol macro. You can now conspicuously post a

note on the worksheet reminding the client to press Ctrl+Shift+C to clean the first column.

581Other Ways to Run a Macro

Attach a Macro to a Command Button
Two types of buttons can be embedded in your sheet: the traditional button shape that can

be found on the Forms control or an ActiveX command button. (Both can be accessed on

the Developer tab under the Insert option.)

To add a Forms control button with a macro to your sheet, follow these steps:

 1. On the Developer tab, click the Insert button and select the button control from the

Forms section of the drop-down, as shown in Figure 26.22.

Be careful when assigning keyboard shortcuts. Many of the keys are already mapped to important

Windows shortcuts. If you would happen to assign a macro to Ctrl+C, anyone who uses this shortcut

to copy the selection to the clipboard will be frustrated when your application does something else in

response to this common shortcut. Letters E, J, M, and Q are usually good choices because as of Excel

2010, they have not yet been assigned to Excel’s menu of “Ctrl+” shortcut combinations. Ctrl+L and

Ctrl+T used to be available, but these are now used to create a table in Excel 2010.

C A U T I O N

Figure 26.21
The simplest way to
enable a client to run
a macro is to assign a
shortcut key to the macro.
Ctrl+Shift+C now runs
the Clean1stCol macro.

Chapter 26 Customizing the Ribbon to Run Macros582

 2. Place your cursor in the worksheet where you want to insert the button, and then click

and drag to create the shape of your new button.

 3. When you release the mouse button, the Assign Macro dialog displays. Select a macro

to assign to the button and select OK.

 4. Highlight the text on the button and type new meaningful text.

 5. To change the font, text aligment and other aspects of the button’s appearance, right-

click the button and select Format Control from the pop-up menu.

 6. To reassign a new macro to the button, right-click the button and select Assign Macro

from the pop-up menu.

Attach a Macro to a Shape
The previous method assigned a macro to an object that looks like a button. You can also

assign a macro to any drawing object on the worksheet. To assign a macro to an Autoshape,

right-click the shape and select Assign Macro, as shown in Figure 26.23.

Figure 26.22
The Forms controls are
found under the Insert
icon on the Developers
tab.

Figure 26.23
Macros can be assigned
to any drawing object on
the worksheet.

583Other Ways to Run a Macro

I prefer this method because I can easily add a drawing object with macro code and use

the OnAction property to assign a macro to the object. There is one big drawback to this

method: If you assign a macro that exists in another workbook, and the other workbook is

saved and closed, Excel changes the OnAction for the object to be hard-coded to a specific

folder.

Attach a Macro to an ActiveX Control
ActiveX controls are newer than Form controls and slightly more complicated to set up.

Instead of simply assigning a macro to the button, you will have a button_click procedure

where you can either call another macro or have the macro code actually embedded in the

button_click procedure. Follow these steps:

 1. On the Developer tab, click the Insert button and select the Command Button icon

from the ActiveX Controls section of the drop-down Control toolbox.

 2. Draw a button shape on the worksheet as described in step 2 for the Forms button.

 3. To format the button, right-click the button and select Properties or select Properties

from the Developer tab. You can now adjust the button’s caption and color in the

Properties window, as shown in Figure 26.24. If nothing happens when you right-click

the button, enter Design mode by clicking the Design Mode button on the Developer

tab.

There is one annoying aspect of this Properties window: It is huge and covers a large portion of your

worksheet. Eventually, if you want to use the worksheet, you are going to have to close this Properties

window. When you close the Properties window, it also hides the Properties window in the VB Editor. I

would prefer that I could close this Properties window without affecting my VB Editor environment.

N
O

T
E

Figure 26.24
Clicking the Properties
icon brings up the
Properties window, where
you can adjust many
aspects of the ActiveX
button.

Chapter 26 Customizing the Ribbon to Run Macros584

 4. To assign a macro to the button, click the View Code button on the Controls group

of the Developer tab. This creates a new procedure on the code pane for the current

worksheet. Type the code that you want to have run or the name of the macro you

want to run in this procedure. Figure 26.25 shows the code for the button. This code

appears on the code pane for the worksheet.

Figure 26.25
Click the View Code but-
ton in the Control Toolbox
toolbar to open the macro
for this button.

Running a Macro from a Hyperlink
Using a trick, it is possible to run a macro from a hyperlink. Because many people are used

to clicking a hyperlink to perform an action, this method might be more intuitive for your

clients.

The trick is to set up placeholder hyperlinks that simply link back to themselves. Select a

cell and from the Insert tab, select Hyperlink (or press Ctrl+K). In the Insert Hyperlink

dialog, click Place in This Document. Figure 26.26 shows a worksheet with four hyperlinks.

Each hyperlink points back to its own cell.

When a client clicks a hyperlink, you can intercept this action and run any macro by using

the FollowHyperlink event. Enter the following code on the code module for the work-

sheet:

Private Sub Worksheet_FollowHyperlink(ByVal Target As Hyperlink)
Select Case Target.TextToDisplay
 Case “Widgets”
 RunWidgetReport
 Case “Gadgets”
 RunGadgetReport
 Case “Gizmos”
 RunGizmoReport
 Case “Doodads”
 RunDooDadReport
End Select
End Sub

585Next Steps

Figure 26.26
To run a macro from
a hyperlink, you must
create placeholder
hyperlinks that link back
to their cells. Then, using
an event handler macro
on the worksheet’s code
pane, you can intercept
the hyperlink and run any
macro.

Using VBA, you can create standard add-in files for

your clients to use. After the client installs the add-

in on his PC, the program will be available to Excel

and loads automatically every time he opens Excel.

This chapter discusses standard add-ins.

Be aware that there are two other kinds of add-ins:

COM add-ins and DLL add-ins. Neither of these

can be created with VBA. To create these types

of add-ins, you need either Visual Basic.NET or

Visual C++.

Characteristics of Standard Add-Ins
If you are going to distribute your applications, you

might want to package the application as an add-in.

Typically saved with an .xlam extension for Excel

2007-10 or an .xla extension for Excel 97-2003, the

add-in offers several advantages:

 ■ Usually, clients can bypass your Workbook_Open

code by holding down the Shift key while

opening the workbook. With an add-in, they

cannot bypass the Workbook_Open code in this

manner.

 ■ After the Add-Ins dialog is used to install an

add-in (select File, Options, Add-Ins, Manage

Excel Add-Ins, Go), the add-in will always be

loaded and available.

 ■ Even if the macro security level is set to disal-

low macros, programs in an installed add-in

can still run.

 ■ Generally, custom functions work only in the

workbook in which they are defined. A custom

function added to an add-in is available to all

open workbooks.

Creating Add-Ins

27

Chapter 27 Creating Add-Ins588

 ■ The add-in does not show up in the list of open files in the Window menu item. The

client cannot unhide the workbook by choosing Window, Unhide.

There is one strange rule for which you need to plan. The add-in is a hidden workbook. Because the

add-in can never be displayed, your code cannot select or activate any cells in the add-in workbook.

You are allowed to save data in your add-in file, but you cannot select the file. Also, if you do write

data to your add-in file that you want to be available in the future, your add-in codes need to handle

saving the file. Because your clients will not realize that the add-in is there, they will never be

reminded or asked to save an unsaved add-in. You might add ThisWorkbook.Save to the add-in’s

Workbook_BeforeClose event.

C A U T I O N

Converting an Excel Workbook to an Add-In
Add-ins are typically managed by the Add-Ins dialog. This dialog presents an add-in name

and description. You can control these by entering two specific properties for the file before

you convert it to an add-in.

The file must have already been saved at least once for the properties to appear.

N
O

T
E

To change the title and description shown in the Add-Ins dialog, follow these steps:

 1. Select File. Excel displays the Document Properties pane on the right side of the win-

dow.

2. From the Properties drop-down, select Show All Properties

3. Enter the name for the add-in in the Title field.

4. Enter a short description of the add-in in the Comments field (see Figure 27.1).

5. Select another tab such as the Home tab, to return to your workbook.

Figure 27.1
Fill in the Title and
Comments fields before
converting a workbook to
an add-in.

589Converting an Excel Workbook to an Add-In

There are two ways to convert the file to an add-in. The first method, using Save As, is eas-

ier, but has an annoying by-product. The second method uses the VB Editor and requires

two steps, but gives you some extra control. The sections that follow describe the steps for

using these methods.

Using Save As to Convert a File to an Add-In
Select File, Save As. In the Save as Type field, scroll through the list and select Excel

Add-In (*.xlam).

If your add-in might be used in Excel 97 through Excel 2010, choose Excel 97-2003 Add-In (*.xla).

N
O

T
E

As shown in Figure 27.2, the filename changes from Something.xlsm to Something.xlam.

Also note that the save location automatically changes to an AddIns folder. This folder loca-

tion varies by operating system, but it will be something along the lines of C:\Documents

and Settings\Customer\Application Data\Microsoft\AddIns. It is also confusing that, after

saving the XLSM file as an XLAM type, the unsaved XLSM file remains open. It is not

necessary to keep an XLSM version of the file because it is easy to change an XLAM back

to an XLSM for editing.

Figure 27.2
If you are creating an
add-in for your own use,
the Save As method
changes the IsAddIn
property, changes the
name, and automatically
saves the file in your
AddIns folder.

When using the Save As method to create an add-in, a worksheet must be the active sheet. The

Add-In file type is not available if a Chart sheet is the active sheet.

C A U T I O N

Chapter 27 Creating Add-Ins590

Using the VB Editor to Convert a File to an Add-In
The Save As method is great if you are creating an add-in for your own use. However, if

you are creating an add-in for a client, you probably want to keep the add-in stored in a

folder with all the client’s application files. It is fairly easy to bypass the Save As method and

create an add-in using the VB Editor:

 1. Open the workbook that you want to convert to an add-in.

 2. Switch to the VB Editor.

 3. In the Project Explorer, click ThisWorkbook.

 4. In the Properties window, find the property called IsAddIn and change its value to

True, as shown in Figure 27.3.

Figure 27.3
Creating an add-in is as
simple as changing the
IsAddIn property of
ThisWorkbook.

 5. Press Ctrl+G to display the Immediate window. In the Immediate window, save the file,

using an .xlam extension:

ThisWorkbook.SaveAs FileName:=”C:\ClientFiles\Chap27.xlam”, FileFormat:= xlO-
penXMLAddIn

If your add-in might be used in Excel 97 through Excel 2003, change the final parameter from xlO-

penXMLAddIn to xlAddIn.

N
O

T
E

You’ve now successfully created an add-in in the client folder that you can easily find and

e-mail to your client.

591Having Your Client Install the Add-In

Having Your Client Install the Add-In
After you e-mail the add-in to your client, have her save it on her desktop or in another

easy-to-find folder. She should then follow these steps:

 1. Open Excel 2010. From the File menu, select Options.

 2. Along the left navigation, select Add-Ins.

 3. At the bottom of the window, select Excel Add-Ins from the Manage drop-down (see

Figure 27.4).

4. Click Go. Excel displays the familiar Add-Ins dialog.

5. In the Add-Ins dialog, click the Browse button (see Figure 27.5).

6. Browse to where you saved the file. Highlight your add-in and select OK.

The add-in is now installed. If you allow it, Excel copies the file from where you saved it to

the proper location of the AddIns folder. In the Add-Ins dialog, the title of the add-in and

comments as specified in the File Properties dialog are displayed (see Figure 27.6).

Manage Drop-Down

Figure 27.4
The Excel 2010 Add-Ins
tab in Options is signifi-
cantly more complex than
in Excel 2003. Select Excel
Add-Ins from the bottom
and click Go.

Chapter 27 Creating Add-Ins592

Standard Add-Ins Are Not Secure
Remember that anyone can go to the VB Editor, select your add-in, and change the

IsAddin property to False to unhide the workbook. You can discourage this process by

locking the XLAM project for viewing and protecting it in the VB Editor, but be aware that

plenty of vendors sell a password-hacking utility for less than $40. To add a password to

your add-in, follow these steps:

1. Go to the VB Editor.

2. From the Tools menu, select VBAProject Properties.

3. Select the Protection tab.

4. Select the Lock Project For Viewing check box.

5. Enter the password twice for verification.

Figure 27.5
Your client selects Browse
from the Add-Ins dialog.

Figure 27.6
The add-in is now avail-
able for use.

593Using a Hidden Workbook as an Alternative to an Add-In

Closing Add-Ins
Add-ins can be closed in three ways:

 1. Clear the add-in from the Add-Ins dialog. This closes the add-in for this session and

ensures that it does not open during future sessions.

 2. Use VB Editor to close the add-in. In the VB Editor’s Immediate pane, type this code

to close the add-in:

Workbooks(“YourAddinName.xlam”).Close

 3. Close Excel. All add-ins are closed when Excel is closed.

Removing Add-Ins
You might want to remove an add-in from the list of available add-ins in the Add-In dialog

box. There is no effective way to do this within Excel. Follow these steps:

 1. Close all running instances of Excel.

 2. Use Windows Explorer to locate the file. The file might be located in %AppData%\

Microsoft\AddIns\.

 3. In Windows Explorer, rename the file or move it to a different folder.

 4. Open Excel. You get a note warning you that the add-in could not be found. Click OK

to dismiss this box.

 5. Go to File, Options, Add-Ins, Manage Excel Add-Ins, Go. In the Add-Ins dialog box,

clear the name of the add-in you want to remove. Excel notifies you that the file cannot

be found and asks whether you want to remove it from the list. Select Yes.

Using a Hidden Workbook as an Alternative to an Add-In
One cool feature of an add-in is that the workbook is hidden. This keeps most novice users

from poking around and changing formulas. However, it is possible to hide a workbook

without creating an add-in.

It is easy enough to hide a workbook by selecting Hide from the Window menu in Excel.

The trick is to then save the workbook as Hidden. Because the file is hidden, the normal

File, Save choice does not work. This can be done from the VB Editor window. In the

VB Editor, make sure that the workbook is selected in the Project Explorer. Then, in the

Immediate window, type the following:

ThisWorkbook.Save

Chapter 27 Creating Add-Ins594

Access developers routinely use a second database to hold macros and forms. They place all forms and programs in one

database and all data in a separate database. These database files are linked through the Link Tables function in Access.

For large projects in Excel, I recommend the same method. You use a little bit of VBA code in the Data workbook to open

the Code workbook.

The advantage to this method is that when it is time to enhance the application, you can mail a new code file without

affecting the client’s data file.

I once encountered a single-file application rolled out by another developer that the client had sent out to 50 sales reps.

The reps replicated the application for each of their 10 largest customers. Within a week, there were 500 copies of this file

floating around the country. When they discovered a critical flaw in the program, patching 500 files was a nightmare.

We designed a replacement application that used two workbooks. The data workbook ended up with about 20 lines of

code. This code was responsible for opening the code workbook and passing control to the code workbook. As the files

were being closed, the data workbook would close the code workbook.

There were many advantages to this method. First, the customer data files were kept to a very small size. Each sales rep

now has one workbook with program code and ten or more data files for each customer. As enhancements are completed,

we distribute new program code workbooks. The sales rep opens his or her existing customer data workbook, which auto-

matically grabs the new code workbook.

Because the previous developer had been stuck with the job of trying to patch 500 workbooks, we were extremely care-

ful to have as few lines of code in the customer workbook as possible. There are maybe ten lines of code, and they were

tested extremely thoroughly before being sent out. By contrast, the code workbook contains 3,000+ lines of code. So if

something goes wrong, I have a 99 percent chance that the bad code will be in the easy-to-replace code workbook.

In the customer data workbook, the Workbook_Open procedure has this code:

Private Sub Workbook_Open()
 On Error Resume Next
 X = Workbooks(“Code.xlsm”).Name
 If Not Err = 0 then
 On Error Goto 0
 Workbooks.Open Filename:= _
 ThisWorkbook.Path & Application.PathSeparator & “Code.xlsm”
 End If
 On Error Goto 0
 Application.Run “Code.xlsm!CustFileOpen”
End Sub

The CustFileOpen procedure in the code workbook handles adding a custom menu for the application. It also calls

a macro named DeliverUpdates. If we ever have to change the 500 customer data files, the DeliverUpdates macro will

handle this via code.

This dual-workbook solution works well and allows updates to be seamlessly delivered to the client without touching any

of the 500 customer files.

C A S E S T U D Y : U S I N G A H I D D E N C O D E W O R K B O O K T O H O L D A L L
M A C R O S A N D F O R M S

Symbols

3-D format, changing, 230-234

3-D rotation settings, 224-229

32-bit API declarations, changing to

64-bit, 538

64-bit API declarations, changing 32-bit

declarations to, 538

A

A1-style references, 127-128

About dialog, customizing, 541

AboutMrExcel() procedure, 541

above/below average cells, formatting,

383

absolute mode, 25

absolute references, 133

accelerator keys, displaying, 529

Access databases. See databases

Activate event, 187

active control, coloring, 530-532

ActiveFilters property, 289

ActiveX controls

attaching macros to, 583-584

right-click menu for, 360-362

ActiveX data objects. See ADO

Add method, 148-149, 442

Add3ColorScale() procedure, 375

AddAboveAverage method, 383

AddChart method, 203

AddControl event, 187, 195, 199

AddCrazyIcons() procedure, 382

Index

598

AddGlowToTitle() procedure, 223

add-ins

Add-Ins dialog, 588

characteristics of, 587-588

closing, 593

converting workbooks to, 588-590

hidden workbooks as alternative to
add-ins, 593-594

installing, 591

removing, 593

security, 592

Add-Ins dialog, 588

Addition procedure, 81

AddTransfer() procedure, 480-481

AddTwoDataBars() procedure, 381

ADO (ActiveX data objects)

compared to DOA (data access
objects), 477

connections, 478

cursors, 478

fields

adding on-the-fly, 489-490

checking existence of, 488

lock type, 479

overview, 478-480

records

adding, 480-481

deleting, 485

retrieving, 481-483

summarizing, 485-486

updating, 483-485

recordsets, 478

tables

adding on-the-fly, 489

checking existence of, 487-488

ADOAddField() procedure, 489-490

ADOCreateReplenish() procedure, 489

ADOWipeOutAttribute() procedure, 485

Advanced Filter

building with Excel interface, 258

case study: creating reports for each
customer, 280-283

criteria ranges

case study, 268

explained, 265-266

formula-based conditions, 268-275

logical AND criteria, 267

logical OR criteria, 267

extracting unique list of values,
258-264

getting unique combinations of
two or more fields, 263-264

with user interface, 259

with VBA code, 260-263

Filter in Place, 275-276, 283-285

overview, 257

xlFilterCopy with all records,
276-280

copying all columns, 277

copying a subset of columns and
reordering, 278-280

AdvancedFilter method, 260

AfterUpdate event, 190, 193-197

ahtAddFilterItem API function, 546

aht_apiGetOpenFileName API function,

544-546

aht_apiGetSaveFileName API function,

544-546

AllColumnsOneCustomer() procedure, 277

AllowMultipleFilters property, 289

API declarations

32-bit versus 64-bit, 538

ahtAddFilterItem, 546

aht_apiGetOpenFileName, 544-546

aht_apiGetSaveFileName, 544-546

AddGlowToTitle() procedure

599application-level events

AppEvent_SheetSelectionChange() event,

178

AppEvent_WindowActivate() event, 179

AppEvent_WindowDeactivate() event, 179

AppEvent_WindowResize() event, 179

AppEvent_WorkbookActivate() event, 179

AppEvent_WorkbookAddinInstall() event,

179

AppEvent_WorkbookAddinUninstall()

event, 179

AppEvent_WorkbookAfterXmlExport()

event, 181

AppEvent_WorkbookAfterXmlImport()

event, 181

AppEvent_WorkbookBeforeClose() event,

179

AppEvent_WorkbookBeforePrint() event,

180

AppEvent_WorkbookBeforeSave() event,

180

AppEvent_WorkbookBeforeXmlExport()

event, 181

AppEvent_WorkbookBeforeXmlImport()

event, 181

AppEvent_WorkbookNewSheet() event,

180

AppEvent_WorkbookOpen() event, 180

AppEvent_

WorkbookPivotTableCloseConnection()

event, 180

AppEvent_

WorkbookPivotTableOpenConnection()

event, 180

AppEvent_WorkbookRowsetComplete()

event, 181

AppEvent_WorkbookSync() event, 181

application-level events, 176-181

trapping, 494-495

calling, 537

DisplaySize, 540

explained, 535-536

finding, 547

FindWindow, 541-543

GetComputerName, 538-539

GetSystemMenu, 541-542

KillTimer, 542-543

lOpen, 539

PlayWavSound, 543

SetTimer, 542-543

ShellAbout, 541

AppEvent_AfterCalculate() event, 176

AppEvent_NewWorkbook() event, 177

AppEvent_

ProtectedViewWindowActivate() event,

177

AppEvent_

ProtectedViewWindowBeforeClose()

event, 177

AppEvent_

ProtectedViewWindowDeactivate()

event, 177

AppEvent_ProtectedViewWindowOpen()

event, 177

AppEvent_ProtectedViewWindowResize()

event, 177

AppEvent_SheetActivate() event, 177

AppEvent_SheetBeforeDoubleClick()

event, 178

AppEvent_SheetBeforeRightClick() event,

178

AppEvent_SheetCalculate() event, 178

AppEvent_SheetChange() event, 178

AppEvent_SheetDeactivate() event, 178

AppEvent_SheetFollowHyperlink() event,

178

AppEvent_SheetPivotTableUpdate()

event, 178

600 Application.OnTime

asymmetric pivot tables, named sets for,

322-323

attaching macros

to ActiveX controls, 583-584

to command buttons, 581-582

to shapes, 582-583

The Attribute “Attribute Name” on the

Element “customui Ribbon” Is Not

Defined in the DTD/Schema (error

message), 577

AutoFilter

filtering by color, 253

filtering by icon, 254

replacing loops with, 249-251

selecting dynamic data range with,
254-255

selecting multiple items, 252

selecting visible cells only, 255-256

selecting with Search box, 252-255

turning off drop-downs in, 285

AutoFilterCustom() procedure, 285

automation (Word)

bookmarks, 448-449

constant values, 439-441

controlling form fields, 450-452

creating and referencing objects,
437-439

Document object, 442-443

early binding, 433-436

explained, 433

late binding, 436-437

macro recorder, 441

Range object, 444-447

Selection object, 443-444

AutoSort, 308

AutoSum button, 30-31

Application.OnTime, 399-400

scheduling

macros to run every two minutes,
403-404

macros to run x minutes in the
future, 401-402

scheduled procedures with ready
mode, 400

verbal reminders, 402

specifying a window of time for
updates, 400

applications

checking version of, 144-145

compatibility issues

Compatibility mode, 145

explained, 144

historical stock/fund quotes, 362-363

ApplyLayout method, 203

ApplyTexture() procedure, 220

ApplyThemeColor() procedure, 220

Areas collection, 77

arrays

advantages of, 457-458

array formulas, 137-138

declaring, 453-454

defined, 453

dynamic arrays, 459-460

emptying, 456-457

filling, 455-456

multidimensional arrays, 454

names, 153-154

one-dimensional arrays, 454

passing, 460

art, SmartArt, 142-144

Assign3DPreset() procedure, 224

AssignBevel() procedure, 230

asterisks (*), 356-358

601case studies

changing to show percentages,
305-308

elapsed time, 353-354

calling

API declarations, 537

userforms, 186

Can’t find object or library (error mes-

sage), 435-436

case of text, changing, 359-360

Case statements, 124

case studies

cleaning up recorded code, 62-64

converting Excel 2003 custom toolbar
to Excel 2010, 575-577

criteria ranges, 268

custom functions, 80

data visualization, 327

entering A1 versus R1C1 references,
131

entering military time into cell, 171

filtering to top five or top 10, 319

formula-based conditions, 270

Go To Special instead of looping,
256-257

help buttons, 505-506

hidden workbook to hold macros and
forms, 594

looping through directory files,
119-120

multicolumn list boxes, 532

named ranges for VLOOKUP,
156-157

page setup errors, 555

password cracking, 560

recording macros, 22-23

relative references, 26-28

B

BASIC, 8

BeforeDragOver event, 187, 190, 193-199

BeforeDropOrPaste event, 187, 190,

193-199

BeforeUpdate event, 190, 193-197

below/above average cells, formatting,

383

bevel format, changing, 230-234

binding

early binding, 433-436

late binding, 436-437

bins, creating for frequency charts,

236-239

blank cells

eliminating from pivot tables, 308

formatting cells that contain blanks or
errors, 387

bookmarks, 448-449

BookOpen() function, 83

Bottom 5 cells, formatting, 383-384

breakpoints, 49, 55

btnClose_Click() procedure, 512

BubbleSort() procedure, 98

built-in chart types, 208-210

buttons. See also specific buttons

attaching macros to, 581-582

custom icon images, 574-575

help buttons, 505-506

Microsoft Office icons, 573-574

C

.Calculation options, 306-307

calculations

calculated data fields, 324-325

calculated items, 325

602 cells

setting workbook name in, 82

summing based on interior color,
89-90

Cells(), 59

Cells property

as parameters in Range property, 69

selecting ranges with, 68-69

centering cell comments, 340-341

Change event, 190, 193-199

ChangeFormat() procedure, 446

ChangeStyle() procedure, 447

ChangeTheChartLater() procedure, 207

changing

range size, 71-72

text case, 359-360

Chart_Activate() event, 173

Chart_BeforeDoubleClick() event, 173

Chart_BeforeRightClick() event, 173

Chart_Calculate() event, 173

Chart_Deactivate() event, 173

Chart_DragOver() event, 175

Chart_DragPlot() event, 175

chart events, 166-167, 172-175, 495-497

ChartFormat method, 203

ChartFormat object, 218

Chart Layout gallery, 211-213

Chart_MouseDown() event, 174

Chart_MouseMove() event, 174

Chart_MouseUp() event, 174

Chart_Resize() event, 174

charts

built-in chart types, 208-210

in cell comments, 341-342

chart events, 166-167, 172-175,
495-497

trapping, 495-497

creating, 204-207

cells

A1-style references, 127-128

blank cells, eliminating from pivot
tables, 308

checking for empty cells, 73-74

comments

charts in, 341-342

listing, 337-339

resizing, 339-341

conditional formatting. See condi-
tional formatting

entering military time into, 171

noncontiguous cells, selecting/
deselecting, 347-349

progress indicators, creating, 355-356

R1C1-style references

absolute references, 133

array formulas, 137-138

case study: entering A1 versus
R1C1 references, 131

explained, 127-128

formulas, 129-132

mixed references, 133

multiplication table example,
134-135

referring to entire columns/rows,
134

relative references, 132-133

remembering column numbers
associated with column letters,
136

switching to, 128

returning column letter of cell
address, 103

reversing contents of, 101

selected cells, highlighting, 342-344,
344-345

selecting with SpecialCells, 360

603ColName() function

CheckBox control, 512-513

check boxes, 512-513

CheckDisplayRes() procedure, 540

CheckForSheet() procedure, 84

checking

existence of names, 155-156

for open files, 539

whether workbook is open, 83

CheckUserRights() procedure, 86

class modules

creating collections in, 502-504

inserting, 493

cleaning up recorded code

case study, 62-64

tips for, 58-61

ClearAllFilters method, 289

ClearTable method, 289

Click event, 187, 190, 193-196, 200

clients, training about error handling, 557

Close method, 443

closing

add-ins, 593

documents, 443

Excel, 401

userform windows, 200-201

code protection, 559

collections

Areas, 77

creating

in class modules, 502-504

in standard module, 501-502

defined, 501

explained, 35

grouping controls into, 519-521

ColName() function, 103

dynamic charts, creating in userforms,
244-245

embedded charts, 172

exporting as graphics, 244-245

formatting

3-D rotation settings, 224-229

bevel and 3D format, 230-234

chart elements to which format-
ting applies, 218-234

Format method, 218-234

glow settings, 222-223

line settings, 222

object fill, 219-222

reflection settings, 223

shadow settings, 223

soft edges, 223-224

frequency charts, 236-239

Layout tab, 213-218

layouts, 211-213

new features (Excel 2010), 139-140

Open-High-Low-Close (OHLC)
charts, 235-236

overview, 203

pivot charts, 246-247

referencing, 203-207

SetElement method, 213-218

sparklines. See sparklines

specifying size and location of,
204-205

stacked area charts, 239-243

styles, 211-213

template chart types, 210-211

Win/Loss charts, 426-427

Chart_Select() event, 174-175

Chart_SeriesChange() event, 175

ChartStyle property, 213

ChartType property, 208

color

color scales

adding to ranges, 374-375

explained, 367

coloring active control, 530-532

filtering by, 253

RGB colors in sparklines, 421-423

summing cells based on interior
color, 89-90

theme colors for sparklines, 418-421

using two colors of data bars in range,
380-382

ColorFord() procedure, 251

ColorFruitRedBold() procedure, 121-122

ColumnExists() procedure, 488

ColumnHeaders() procedure, 455

columns

copying all columns, 277

remembering column numbers asso-
ciated with column letters, 136

subset of columns, copying, 278-280

Columns property, 72

combining worksheets into workbooks,

334-335

combo boxes, 191-193

command buttons

attaching macros to, 581-582

events for, 189

CommandButton event, 191

comments

adding to names, 150

in cells

charts in, 341-342

listing, 337-339

resizing, 339-341

compact layout, 293-294

CompactLayoutColumnHeader property,

289

CompactLayoutRowHeader property, 289

CompactRowIndent property, 290

compatibility issues

checking application version with
Version property, 144-145

Compatibility mode, 145

explained, 144

Compatibility mode, 145

complex expressions, 124

ComplexIf() procedure, 124-126

computer names, retrieving, 538-539

concatenation, 97-98

conceptual filters (pivot tables), 313-316

conditional formatting

color scales

adding to ranges, 374-375

explained, 367

data bars

adding to ranges, 369-374

explained, 367

determining which cells to format,
387-388

formatting cells based on value, 385

formatting cells in top 10 or bottom
5, 383-384

formatting cells that are above/below
average, 383

formatting cells that contain blanks or
errors, 387

formatting cells that contain dates,
386

formatting cells that contain text, 386

formatting unique or duplicate cells,
384-385

highlighting selected cell, 342-344

icon sets

adding to ranges, 375-378

explained, 368

604 color

605criteria ranges

converting

Excel 2003 custom toolbar to Excel
2010, 575-577

pivot tables to values, 299-301

week numbers into dates, 96

workbooks to add-ins, 588-590

ConvertToFormulas method, 289

CopyFromRecordSet method, 481

copying

data into worksheets, 335-336

formulas, 129-130

macros into workbooks, 363-365

ranges, 61

subset of columns, 278-280

CopyToNewFolder() procedure, 120

counting

records, 303

unique values, 90-91

workbooks in directory, 84-85

CountMyWkbks() procedure, 85

cracking passwords, 560

CreatedStackedChart() procedure,

242-243

CreateFrequencyChart() procedure,

238-239

CreateMemo() procedure, 448-449

CreateObject() function, 438

CreateOHCLChart() procedure, 236

CreatePivot() procedure, 298-299

CreatePivotTable method, 295

CreateSummaryReportUsingPivot() proce-

dure, 246-247, 300-301

criteria ranges

case study, 268

explained, 265-266

formula-based conditions, 268-275

new features (Excel 2010), 140-141

NumberFormat property, 388-389

VBA methods and properties,
368-369

conditions (If statement), 121

configuring pivot tables, 295-296

connections (ADO), 478

constant values

defined constants, 41-45

explained, 439

retrieving with Object Browser,
440-441

retrieving with Watch window, 440

ContainsText() function, 100-101

content management system, 407-409

controls. See also userforms

active control, coloring, 530-532

ActiveX controls

attaching macros to, 583-584

right-click menu for, 360-362

adding at runtime, 523-529

adding on-the-fly, 525

CheckBox, 512-513

grouping into collections, 519-521

programming, 188

RefEdit, 515

renaming, 188

Ribbon control arguments, 569-571

Ribbon control attributes, 566

running macros from, 16-17

ScrollBar, 517-519

TabStrip, 513-515

tip text, adding to userforms, 530

ToggleButton, 517

troubleshooting, 189

logical AND criteria, 267

logical OR criteria, 267

Criteria reserved name, 155

CSV files, importing, 331-332

CurrentRegion property, 74-76

cursors, 478

custom About dialog, 541

custom functions. See UDFs (user-defined

functions)

Custom UI Editor, 572

CustomerByProductReport() procedure,

309-312

customizing

data transposition, 345-347

icon images, 574-575

objects

creating custom objects, 497-498

Property Let/Property Get proce-
dures, 499-501

referencing, 498-499

Ribbon to run macros

control arguments, 569-571

control attributes, 566

custom icon images, 574-575

Custom UI Editor tool, 572

customui folder, 564-565

error messages, 577-580

explained, 563-565

file structure, accessing, 571

Microsoft Office icons, 573-574

RELS file, 571-572

tab and group, 565-566

sort orders, 354-355

web pages, 406

customui folder, 564-565

D

dashboards

creating, 427-432

sparklines

creating, 412-413

creating 100’s of individual spar-
klines in a dashboard, 428-432

formatting, 418-421

observations about, 428

scaling, 414-418

types of sparklines, 411

data

getting from the Web, 391-392

publishing to web pages, 404-406

data access objects (DAO), 477

data bars

adding to ranges, 369-374

explained, 367

using two colors of data bars in range,
380-382

data transposition, customizing, 345-347

data visualizations

applying, 327

color scales, adding to ranges,
374-375

conditional formatting

determining which cells to format,
387-388

formatting cells based on value,
385

formatting cells in top 10 or bot-
tom 5, 383-384

formatting cells that are above/
below average, 383

formatting cells that contain
blanks or errors, 387

formatting cells that contain dates,
386

606 criteria ranges

607Delete method

shared access databases, creating,
477-478

SQL Server, 490-491

tables

adding on-the-fly, 489

checking existence of, 487-488

DataExtract() procedure, 490-491

DataSets variable, 473

dates

converting week numbers into, 96

formatting cells that contain dates,
386

grouping to months, quarters, or
years, 303-305

retrieving permanent date/time, 87

retrieving saved date/time, 86-87

DateTime() function, 87

DblClick event, 187, 190, 193-197, 200

Deactivate event, 187

Debug button, 551

Debug errors, 551-552

debugging tools

breakpoints, 49

jumping forward/backward in code,
49-50

querying variable values, 50-54

Run to Cursor, 50

stepping through code, 46-48

watches, 55

declaring

arrays, 453-454

variables, 20

defined constants, 41-45

defining

pivot cache, 295

ranges, 444-446

Delete method, 149-150

formatting cells that contain text,
386

formatting unique or duplicate
cells, 384-385

NumberFormat property, 388-389

data bars

adding to ranges, 369-374

using two colors of data bars in
range, 380-382

explained, 368

icon sets

adding to ranges, 375-378

creating for subset of range,
378-380

VBA methods and properties for,
368-369

DataBar2() procedure, 372-373

DataBar3() procedure, 373

Database reserved name, 155

databases

ADO

connections, 478

cursors, 478

lock type, 479

overview, 478-480

recordsets, 478

fields

adding on-the-fly, 489-490

checking existence of, 488

Multidimensional Database (MDB)
format, 475

records

adding, 480-481

deleting, 485

retrieving, 481-483

summarizing, 485-486

updating, 483-485

DeleteFord() procedure, 251

deleting

names, 149-150

records, 485

selections from recorded code, 58

delimited files, opening, 467-470

delimited strings, separating, 96-97

deselecting noncontiguous cells, 347-349

Design tab, changing layout from,

325-326

Developer tab, viewing, 9-10

directories

counting workbooks in, 84-85

listing files in, 329-331

looping through directory files,
119-120

Disable All Macros Except Digitally Signed

Macros setting, 12

Disable All Macros with Notification set-

ting, 11-12

Disable All Macros Without Notification

setting, 11

disabling X button for closing userforms,

541-542

DisplayAllMember method, 289

DisplayContextTooltips property, 290

DisplayFieldCaptions property, 290

displaying R1C1-style references, 128

DisplayMemberPropertyTooltips property,

290

display-resolution information, retrieving,

540

DisplaySize API function, 540

dll (dynamic link libraries), 535

Do loops

explained, 113-115

Until clause, 115-117

While clause, 115-117

DOA (data access objects), 477

Document object

closing documents, 443

explained, 442

opening documents, 442

printing documents, 443

saving documents, 442-443

documents

closing, 443

creating, 442

exporting to, 336-337

opening, 442

printing, 443

saving, 442-443

drilling down pivot tables, 349-350

DropButtonClick event, 190, 193

duplicate cells, formatting, 384-385

duplicates, removing from ranges, 91-92

dynamic arrays, 459-460

dynamic charts, creating in userforms,

244-245

dynamic data ranges, selecting with

AutoFilter, 254-255

dynamic link libraries (dll), 535

DynamicAutoFilter() procedure, 255

E

early binding, 433-436

elapsed time, calculating, 353-354

Element “customui Tag Name” Is

Unexpected (error message), 578

e-mail addresses, validating, 88-89

embedded chart events, trapping,

495-497

embedded charts, 172

EmpAddCollection() procedure, 504

EmpPayCollection() procedure, 501-502

608 DeleteFord() procedure

609events

errors caused by different versions,
561

errors while developing versus errors
months later, 557

explained, 549-552

formatting cells that contain blanks or
errors, 387

generic error handlers, 554

ignoring errors, 554

On Error GoTo syntax, 552-554

On Error Resume Next statement,
554-555

page setup errors, 555

problems with passwords, 560-561

protecting code, 559

suppressing Excel warnings, 556

training clients, 557

error messages

The Attribute “Attribute Name” on
the Element “customui Ribbon” Is
Not Defined in the DTD/Schema,
577

Can’t find object or library, 435-436

Element “customui Tag Name” Is
Unexpected, 578

Excel Found Unreadable Content,
579

Illegal Qualified Name Character,
578

runtime error 9: Subscript Out of
Range, 557

runtime error 1004: Method Range
of Object Global Failed, 558-559

Wrong Number of Arguments or
Invalid Property Assignment, 580

Evaluate method, 153

events. See also specific events

application-level events, 176-181,
494-495

chart events, 172-175

empty cells, checking for, 73-74

emptying arrays, 456-457

Enable All Macros (Not Recommended:

Potentially Dangerous Code Can Run)

setting, 12

enable/disable macro settings, 11-12

enabling

events, 161

macros, 12

encountering errors on purpose, 556

EndKey method, 443

Enter event, 190, 193-197, 200

Err object, 554

Error event, 187, 190, 193-197, 200

error handling

debug errors inside userform code,
551-552

encountering errors on purpose, 556

Err object, 554

error messages

The Attribute “Attribute Name”
on the Element “customui
Ribbon” Is Not Defined in the
DTD/Schema, 577

Can’t find object or library,
435-436

Element “customui Tag Name” Is
Unexpected, 578

Excel Found Unreadable Content,
579

Illegal Qualified Name Character,
578

runtime error 9: Subscript Out of
Range, 557

runtime error 1004: Method
Range of Object Global Failed,
558-559

Wrong Number of Arguments or
Invalid Property Assignment, 580

CheckBox control events, 513

for combo boxes, 191-193

for command buttons, 189

embedded chart events, trapping,
495-497

enabling, 161

explained, 160

for graphics, 195-202

for labels, 189

levels of events, 159-160

for list boxes, 191-193

for MultiPage control, 198-200

for option buttons, 194-195

parameters, 160

RefEdit control events, 516

Scrollbar control events, 519

for spin buttons, 196-202

TabStrip control events, 515

for text boxes, 189

ToggleButton control events, 517

userform events, 186-187

workbook events, 161-167

worksheet events, 168-172

EveryOtherRow() procedure, 455

Excel 97-2003 Workbook file type, 18

Excel 2003 custom toolbar, converting to

Excel 2010, 575-577

Excel 2007 pivot table features, 288-290

Excel 2010

file types, 18-19

pivot table features, 288

Excel Binary Workbook file type, 18

Excel Found Unreadable Content (error

message), 579

Excel Macro-Enabled Workbook file type,

18

Excel Workbook file type, 18

Excel8CompatibilityMode property, 145

Execute method, 485

Exit event, 191-197, 200

exiting For...Next loop after condition is

met, 111-112

ExportChart() procedure, 244

exporting

charts as graphics, 244-245

to Word document, 336-337

expressions in Case statements, 124

Extract reserved name, 155

F

FieldListSortAscending property, 290

fields

adding on-the-fly, 489-490

adding to pivot tables, 296-299

calculated data fields, 324-325

checking existence of, 488

field entry in userforms, verifying,
200

form fields, controlling in Word,
450-452

multiple value fields (pivot tables),
302-303

File menu, Save As command, 589

files

checking for open files, 539

CSV files, importing, 331-332

file structure, accessing, 571

file types in Excel 2010, 18-19

filenames, retrieving, 201-202

listing, 329-331

looping through directory files,
119-120

paths, retrieving, 543-546

RELS file, 571-572

610 events

611Format tab

selecting dynamic data range with,
254-255

selecting multiple items, 252

selecting visible cells only, 255-256

selecting with Search box, 252-255

turning off drop-downs in, 285

finding

API declarations, 547

first nonzero-length cell, 93

FindJPGFilesInAFolder() procedure,

119-120

FindWindow API function, 541-543

first nonzero-length cell, finding in range,

93

FirstNonZeroLength() function, 93

fixed-width files, opening, 463-467

flow control

complex expressions in Case state-
ments, 124

If statement

conditions, 115, 121-124

If...Then...Else, 121

If...Then...Else...End If, 122-123

If...Then...End If, 121-122

nested If statements, 124-126

Select Case...End Select statement,
123

folders, customui, 564-565

For...Next loops

exiting early after condition is met,
111-112

explained, 107-109

nesting, 112

Step clause, 110-111

variables, 110

Format method, 218-234

Format Shape dialog, 230

Format tab. See formatting

text files

fixed-width files, 463-467

importing files with fewer than
1,048,576 rows, 463-470

importing files with more than
1,048,576 rows, 470-473

reading and parsing, 332-333

writing, 473-474

filling arrays, 455-456

FillOutWordForm() procedure, 451-452

Filter in Place, 275-276, 283-285

FilterByFontColor() procedure, 253

FilterByIcon() procedure, 254

filtering

data into worksheets, 335-336

pivot tables

conceptual filters, 313-316

filtering to top five or top 10, 319

manual filters, 312-313

with named sets, 321-323

Search filter, 316-317

slicers, 319-321

FilterNoFontColor() procedure, 253

filters

Advanced Filter

building with Excel interface, 258

case study: creating reports for
each customer, 280-283

extracting unique list of values,
258-264

Filter in Place, 275-276

overview, 257

xlFilterCopy with all records,
276-280

AutoFilter

filtering by color, 253

filtering by icon, 254

replacing loops with, 249-251

FormatAboveAverage() procedure, 383

FormatBelowAverage() procedure, 383

FormatBetween10And20() procedure, 386

FormatBorder() method, 222

FormatBottom5Items() procedure,

383-384

FormatConditions object, 368

FormatContainsA() procedure, 386

FormatDatesLastWeek() procedure, 386

FormatDuplicate() procedure, 385

FormatLessThan15() procedure, 386

FormatLineOrBorders() procedure, 222

FormatShadow() procedure, 223

FormatSoftEdgesWithLoop() procedure,

224

formatting

charts

3-D rotation settings, 224-229

bevel and 3D format, 230-234

chart elements to which format-
ting applies, 218-234

Format method, 218-234

glow settings, 222-223

line settings, 222

object fill, 219-222

reflection settings, 223

shadow settings, 223

soft edges, 223-224

conditional. See conditional format-
ting

ranges, 446-447

sparklines

RGB colors, 421-423

sparkline elements, 423-426

theme colors, 418-421

Win/Loss charts, 426-427

FormatTop10Items() procedure, 383

FormatTop12Percent() procedure, 384

FormatUnique() procedure, 385

FormatWithPicture() procedure, 221

forms. See userforms

formulas

array formulas, 137-138

determining which cells to format,
387-388

entering once and copying down the
column, 129-130

formula-based conditions, 268-275

names, 151

R1C1 formulas, 61

frequency charts, 236-239

FruitRedVegGreen() procedure, 122

FTP, 409-410

functions. See specific functions

G

generic error handlers, 554

GetAddress() function, 102-103

GetComputerName API function, 538-539

GetFileName() function, 546

GetObject() function, 438-439

GetSettings() procedure, 558

GetSystemMenu API function, 541-542

GetUniqueCustomers() procedure, 260

GetUnsentTransfers() procedure, 481-482

global names, 147-148

glow settings, 222-223

Go To Special dialog, 256-257

graphics. See also icons

adding on-the-fly, 526-527

events for, 195-202

exporting charts as, 244-245

SmartArt, 142-144

groups, creating for Ribbon, 565-566

612 FormatAboveAverage() procedure

613IncrementRotationZ property

I

icons

custom icon images, 574-575

filtering by, 254

icon sets

adding to ranges, 375-378

creating for subset of range,
378-380

explained, 368

Microsoft Office icons, 573-574

If statements

conditions, 121

If...Then...Else, 121

If...Then...Else...End If, 122-123

If...Then...End If, 121-122

nesting, 124-126

ignoring errors, 554

Illegal Qualified Name Character (error

message), 578

images. See graphics; icons

Immediate window, 50-53

Import10() procedure, 470

ImportAll() procedure, 470-471

ImportData function, 156-157

importing

CSV files, 331-332

text files

files with fewer than 1,048,576
rows, 463-470

files with more than 1,048,576
rows, 470-473

IncrementRotationHorizontal property,

229

IncrementRotationVertical property, 229

IncrementRotationX property, 229

IncrementRotationY property, 229

IncrementRotationZ property, 229

H

HandleAnError() procedure, 553

handling errors. See error handling

hard-coding, 60-61

help

adding to userforms, 529-532

accelerator keys, 529

coloring active control, 530-532

control tip text, 530

help buttons, 505-506

help files, 143

installing, 37-38

selecting libraries in, 45

help topics, 39

hidden workbooks

as alternative to add-ins, 593-594

case study: hidden workbook to hold
macros and forms, 594

Hide method, 186

hiding

hidden workbooks

as alternative to add-ins, 593-594

case study: hidden workbook to
hold macros and forms, 594

names, 155

userforms, 186

HighlightFirstUnique() procedure, 385-388

highlighting selected cells, 342-345

HighlightWholeRow() procedure, 388

historical stock/fund quotes application,

362-363

HomeKey method, 443

hovering, 53

hyperlink addresses, returning, 102-103

hyperlinks

in userforms, 522

running macros from, 584

InGridDropZones property, 290

Initialize event, 187

input boxes, 183-184

InputBox function, 183-184

inserting class modules, 493

InsertText() procedure, 444

installing

add-ins, 591

help files, 37-38

Intersect method, 73

IsEmailValid() function, 88-89

ISEMPTY function, 73-74

IsWordOpen() procedure, 438

J

jet engine, 476

joining multiple ranges, 72-73

jumping forward/backward in code, 49-50

K

keyboard shortcuts, running macros with,

580-581

KeyDown event, 187, 191-197, 200

KeyPress event, 187, 191-197, 200

KeyUp event, 187, 191-200

keywords, New, 437

KillTimer API function, 542-543

L

Label event, 191, 194-195

labels, 189

last row, determining, 59-60

LastSaved() function, 86-87

late binding, 436-437

Layout event, 187, 195

Layout tab, 213-218

LayoutRowDefault property, 290

layouts

charts, 211-213

compact layout, 293-294

pivot table layout, 325-327

lbl_Email_Click() procedure, 522

lbl_SelectAll_Click() procedure, 520

lbl_unSelectAll_Click() procedure, 520

lbl_Website_Click() procedure, 522

learning curve for VBA, 8

levels of events, 159-160

libraries

dynamic link libraries (dll), 535

selecting in help files, 45

lighting, VBA constants for, 233-234

Line Input method, 472

line settings, 222

LineFormat object, 222

list boxes

combo boxes versus, 191-193

multicolumn list boxes, 532

listing

cell comments, 337-339

files in directories, 329-331

lists, sorting, 354-355

Load method, 186

local names, 147-148

location of charts, specifying, 204-205

lock type (ADO), 479

logical AND criteria, 267

logical OR criteria, 267

loops

Do

explained, 113-115

Until clause, 115-117

While clause, 115-117

For Each, 117-119

614 InGridDropZones property

615military time, entering into cells

canceling previously scheduled,
400-401

closing, 401

copying into workbooks, 363-365

holding in hidden workbooks, 594

recording, 12-14, 22-23

running, 14-17

from form controls, 16-17

from hyperlinks, 584

with keyboard shortcuts, 580-581

from Quick Access toolbar, 15-16

from Ribbon. See Ribbon

scheduling

to run every two minutes, 403-404

to run x minutes in the future,
401-402

security, 10-12

Disable All Macros with
Notification setting, 12

enable/disable settings, 11-12

trusted locations, 10-11

testing, 25

Macros icon (Developer tab), 9

manual filters (pivot tables), 312-313

manually creating web queries, 392-395

material types, 232

maximum values in range, returning

addresses of, 101-102

MaxPoint property, 371

MDB (Multidimensional Database) format,

475

Me keyword, 186

message boxes, 184

methods. See specific methods

Microsoft Office icons, adding to buttons,

573-574

military time, entering into cells, 171

For...Next

exiting early after condition is met,
111-112

explained, 107-109

nesting, 112

Step clause, 110-111

variables, 110

Go To Special instead of looping,
256-257

looping through directory files,
119-120

replacing with AutoFilter, 249-251

While...Wend, 117

lOpen API function, 539

Lotus 1-2-3 macros, 29

M

macro recorder, 441

cleaning up recorded code

case study, 62-64

tips for, 58-61

examining code from, 39-46

flaws in, 7-8, 21-31

absolute mode, 25

AutoSum button, 30-31

examining code in Programming
window, 23-25

recording macros case study, 22-23

relative references, 26-29

relative references case study,
26-28

tips for, 31

Macro Security icon (Developer tab), 9

macros. See also specific procedures

attaching

to ActiveX controls, 583-584

to command buttons, 581-582

to shapes, 582-583

MinPoint property, 371

mixed references, 133

mixed text

retrieving numbers from, 95

sorting numeric and alpha characters,
99-100

modeless userforms, 521

Modify method, 371

modules, 21

MouseDown event, 187, 191-196, 200

MouseMove event, 187, 191, 194-196, 200

MouseUp event, 187, 191, 194-196, 200

MoveAfterTheFact() procedure, 205

MoveAndFormatSlicer() procedure, 321

MsgBox function, 184

MSubstitute() function, 94-95

multicolumn list boxes, 532

multidimensional arrays, 454

Multidimensional Database (MDB) format,

475

MultiPage control, 198-200

multiple actions in With…End With

blocks, 61

multiple characters, substituting, 94-95

multiple items, selecting, 252

multiple row fields, suppressing subtotals

for, 326-327

multiple value fields (pivot tables),

302-303

MultipleIf() procedure, 122

multiplication table, building with R1C1-

style references, 134-135

MultiSelect property, 192-193

MyFullName() function, 82-83

MyName() function, 82

N

Name property, 149

named ranges, 66

named sets, 321-323

NameExists function, 155-157

names

adding comments about, 150

array names, 153-154

checking existence of, 155-156

computer names, retrieving, 538-539

creating, 148-149

deleting, 149-150

explained, 147

formula names, 151

global versus local names, 147-148

hiding, 155

named ranges for VLOOKUP,
156-157

number names, 152-153

reserved names, 154-155

storing values in, 152

string names, 151-152

table names, 153

workbook names, setting in cell, 82

NASDAQMacro() procedure, 416-418

navigation keys, 31

nesting

If statements, 124-126

loops, 112

NetTransfers() procedure, 486

new features (Excel 2010)

charts, 139-140

conditional formatting, 140-141

objects/methods, 143

pivot tables, 140

Ribbon, 139

616 MinPoint property

617overlapping ranges, creating new ranges from

explained, 34

fill, 219-222

new features (Excel 2010), 143

properties, 36, 37

returned by properties, 46

watches on, 55

ObjectThemeColor property, 219

objForm_LostFocus() procedure, 532

Offset property, 69-70, 251

OHLC (Open-High-Low-Close) charts,

235-236

OldLoop() procedure, 250

OldLoopToDelete() procedure, 250

OneColorGradient method, 221, 222

one-dimensional arrays, 454

On Error GoTo syntax, 552-554

On Error Resume Next statement, 554-555

open files, checking for, 539

Open-High-Low-Close (OHLC) charts,

235-236

Open method, 442

opening

delimited files, 467-470

documents, 442

fixed-width files, 463-467

OpenSchema method, 487

OpenText method, 40, 42, 463

optimizing

calculating elapsed time, 353-354

Page Setup, 350-353

option buttons, 194-195

optional parameters, 41

Origin parameter, 41

overlapping ranges, creating new ranges

from, 73

slicers, 140

SmartArt, 142

sorting, 141-142

tables, 141

New keyword, 437

NewDocument() procedure, 442

noncontiguous cells, selecting/

deselecting, 347-349

noncontiguous ranges, returning, 77

NumberFormat() procedure, 388-389

NumberFormat property, 388-389

numbers

names, 152-153

retrieving from mixed text, 95

static random numbers, generating,
103

week numbers, converting into dates,
96

NumFilesInCurDir() function, 84-85

NumUniqueValues() function, 90-91

O

Object Browser, 56-57, 440-441

object-oriented languages, 33-34

object variables, 117-119

objects. See also specific objects

ActiveX data objects. See ADO

bookmarks, 448-449

in collections, 35

creating and referencing

CreateObject() function, 438

GetObject() function, 438-439

New keyword, 437

custom objects

creating, 497-498

Property Let/Property Get proce-
dures, 499-501

referencing, 498-499

P

Page Setup, 350-353, 555

parameters

event parameters, 160

explained, 35-36

optional parameters, 41

parsing text files, 332-333

PassAnArray() procedure, 460

passing arrays, 460

passwords

cracking, 560

password box protection, 356-358

problems with, 560-561

pasting ranges, 61

.Patterned method, 221

Peltier, Jon, 243

percentages, showing, 305-308

permanent date/time, retrieving, 87

Personal Macro Workbook, 13

pivot cache, 295

pivot charts, 246-247

pivot tables

building in Excel interface, 290-294

building in VBA, 294-301

adding fields to data area, 296-299

creating and configuring pivot
table, 295-296

defining pivot cache, 295

calculated data fields, 324-325

calculated items, 325

changing calulations to show percent-
ages, 305-308

changing layout of, 325-327

compact layout, 293-294

controlling sort order with AutoSort,
308

counting number of records, 303

data visualization, applying, 327

determining size of and converting
pivot table to values, 299-301

drilling down, 349-350

eliminating blank cells in values area,
308

Excel 2007 new features, 288-290

Excel 2010 new features, 288

explained, 287

filtering data sets

conceptual filters, 313-316

filtering to top five or top 10, 319

manual filters, 312-313

Search filter, 316-317

slicers, 319-321

with named sets, 321-323

with ShowDetail, 325

grouping daily dates to months, quar-
ters, or years, 303-305

limitations, 299

multiple value fields, 302-303

new features (Excel 2010), 140

replicating reports for every product,
309-312

supressing subtotals for multiple row
fields, 326-327

PivotColumnAxis property, 290

PivotRowAxis property, 290

playing sounds, 543

PlayWavSound API function, 543

Pope, Andy, 243

PresetGradient method, 222

PresetTextured method, 220

Print_Area reserved name, 155

Print_Titles reserved name, 155

PrintDrillIndicators property, 290

printing documents, 443

PrintOut method, 443

618 Page Setup

619ranges

multiplication table example, 134-135

referring to entire columns/rows, 134

relative references, 132-133

remembering column numbers asso-
ciated with column letters, 136

switching to, 128

random numbers, generating, 103

Range object, 65-66, 444-447

defining ranges, 444-446

formatting ranges, 446-447

Range property, 69

ranges

color scales, adding, 374-375

copying/pasting in one statement, 61

creating from overlapping ranges, 73

criteria ranges

case study, 268

explained, 265-266

formula-based conditions, 268-275

logical AND criteria, 267

data bars, adding, 369-374

defining, 444-446

first nonzero-length cell, finding, 93

formatting, 446-447

icon sets, adding, 375-378

specifying icon set, 376

specifying ranges for each icon,
377-378

joining multiple ranges, 72-73

named ranges, 66, 156-157

names

adding comments about, 150

creating, 148-149

deleting, 149-150

Range object, 65-66, 444-447

Priority property, 369

private properties, 497

procedural languages, 33-34

procedures. See specific procedures

Programming window, examining macro

recorder code in, 23-25

progress indicators, 355-356

Project Explorer, 20-21

properties. See also specific properties

explained, 36-37

return values, 46

Properties window, 21

Property Get procedure, 499-501

Property Let procedure, 499-501

protecting

code, 559

password boxes, 356-358

public properties, 497

publishing data to web pages, 404-406

Q

queries, 391-395

QueryClose event, 187, 201

querying variable values, 50-54

Quick Access toolbar, 15-16

QuickFillMax() procedure, 456

QuickSort() procedure, 99-100

R

R1C1-style references, 61

absolute references, 133

array formulas, 137-138

case study: entering A1 versus R1C1
references, 131

explained, 127-128

formulas, 129-132

mixed references, 133

referencing, 59

with Offset property, 69-70

in other sheets, 67

relative to another range, 68

shortcuts, 66-67

removing duplicates from, 91-92

resizing, 71-72

returning addresses of maximum val-
ues in range, 101-102

returning noncontiguous ranges, 77

selecting

with AutoFilter, 254-255

with Cells property, 68-69

with CurrentRegion property,
74-76

specifying

syntax, 66

with Columns/Rows properties, 72

Ranges(), 59

RangeText() procedure, 444

reading text files, 332-333

files with fewer than 1,048,576 rows,
463-470

importing files with more than
1,048,576 rows, 470-473

ReadLargeFile() procedure, 472-473

Record Macro dialog box, 13

Record Macro icon (Developer tab), 9

recorded code, cleaning up, 58-64

recording macros, 12-14, 22-23. See

also macro recorder

records

adding to databases, 480-481

counting number of, 303

deleting, 485

retrieving from databases, 481-483

showing after Filter in Place, 276

summarizing, 485-486

updating, 483-485

recordsets, 325, 478

RefEdit control, 515

references

A1-style references, 127-128

case study: entering A1 versus R1C1
references, 131

R1C1-style references

absolute references, 133

array formulas, 137-138

explained, 127-128

formulas, 129-132

mixed references, 133

multiplication table example,
134-135

referring to entire columns/rows,
134

relative references, 132-133

remembering column numbers
associated with column letters,
136

switching to, 128

referencing

charts, 203-207

custom objects, 498-499

objects

CreateObject() function, 438

GetObject() function, 438-439

New keyword, 437

ranges, 59

with Offset property, 69-70

in other sheets, 67

relative to another range, 68

shortcuts, 66-67

tables, 77-78

reflection settings, 223

620 ranges

621RunReportForEachCustomer() procedure

RevenueByCustomers() procedure, 261

ReverseContents() function, 101

reversing cell contents, 101

RGB colors, 421-423

Ribbon

changes in Excel 2010, 139

customizing to run macros

control arguments, 569-571

control attributes, 566

custom icon images, 574-575

Custom UI Editor tool, 572

customui folder, 564-565

error messages, 577-580

explained, 563-565

file structure, accessing, 571

Microsoft Office icons, 573-574

RELS file, 571-572

tab and group, 565-566

macro buttons, creating, 14-15

rotation, 224-229

RotationX property, 228

RotationY property, 229

RotationZ property, 229

RowAxisLayout method, 289

rows, determining last row, 59-60

Rows property, 72

Run to Cursor debugging tool, 50

RunCustReport() procedure, 278-279

running

macros, 14-17

from form controls, 16-17

from Quick Access toolbar, 15-16

from Ribbon, 14-15

timers, 542-543

RunReportForEachCustomer() procedure,

281-283

refreshing web queries, 392-395

relative references, 26-31

case study, 26-28

R1C1-style references, 132-133

RELS file, 571-572

RememberTheName() procedure, 206

Remove Duplicates command, 384-385

RemoveControl event, 187, 195, 200

removing

add-ins, 593

duplicates from ranges, 91-92

renaming controls, 188

replacing loops with AutoFilter, 249-251

replicating reports for every product,

309-312

reports

creating with Advanced Filter,
280-283

replicating for every product, 309-312

reserved names, 154-155

Reset button, 549-550

ResetRotation method, 229

Resize event, 187

Resize property, 71-72

resizing

cell comments, 339-341

ranges, 71-72

userforms, 524

resolution, 540

RetrieveNumbers() function, 95

retrieving

file paths, 543-546

filenames, 201-202

records, 481-483

return values of properties, 46

ReturnsMaxs() function, 101-102

runtime

adding controls at, 523-529

errors

runtime error 9: Subscript Out of
Range, 557

runtime error 1004: Method
Range of Object Global Failed,
558-559

S

Save As command (File menu), 589

Save method, 442

saved date/time, retrieving, 86-87

saving documents, 442-443

sbX_Change() procedure, 245

sbY_Change() procedure, 245

scaling sparklines, 414-418

scheduling

macros

to run every two minutes, 403-404

to run x minutes in the future,
401-402

verbal reminders, 402

Scroll event, 187, 195, 200

ScrollBar control, 517-519

Search box, 252-255

Search filter (pivot tables), 316-317

searching for strings within text, 100-101

security

add-ins, 592

macro security

Disable All Macros with
Notification setting, 12

enable/disable settings, 11-12

trusted locations, 10-11

password box protection, 356-358

Select Case...End Select statement, 123

Select...Case statement, 104

Select statements, 123

SelectCase() procedure, 123

selected cells, highlighting, 342-345

selecting

cells, 360

libraries, 45

multiple items, 252

noncontiguous cells, 347-349

ranges

with Cells property, 68-69

with CurrentRegion property,
74-76

Selection object, 443-444

SelectSentence() procedure, 445

separating

delimited strings, 96-97

worksheets into workbooks, 333-334

SetElement method, 203, 213-218

SetPresetCamera values, 225-229

SetReportInItalics() procedure, 559

SetTimer API function, 542-543

SetValuesToTabStrip() procedure, 514

shadow settings, 223

shapes, attaching macros to, 582-583

shared access databases, creating,

477-478

sharing UDFs (user-defined functions),

81-82

sheet events (workbook level), 166-167

SheetExists() function, 83-84

sheets, verifying existence of, 83-84

ShellAbout API function, 541

Show method, 186

ShowAllData method, 276

ShowCustForm() procedure, 263

ShowDetail, 325

622 runtime

623StringElement() function

SpecialCells method, 276, 360

SpecifyExactLocation() procedure, 205

SpecifyLocation() procedure, 205

speed testing, 350-353

spin button events, 196-202

SpinDown event, 198

SpinUp event, 198

SQL Server, 490-491

stacked area charts, 239-243

standard modules, creating collections in,

501-502

StartRow parameter, 41

statements. See also loops

Case, 124

If

conditions, 115, 121-124

If...Then...Else, 121

If...Then...Else...End If, 122-123

If...Then...End If, 121-122

nesting, 124-126

On Error GoTo, 552-554

On Error Resume Next, 554-555

Select...Case, 104

Select Case...End Select, 123

Type..End Type, 506

state_period() function, 103

static random numbers, generating, 103

StaticRAND() function, 103

Step clause (For statement), 110-111

stepping through code, 46-48

stock quotes, historical stock/fund quotes

application, 362-363

StopIfTrue property, 369

StoreDashboard() procedure, 430-431

StoreTheName() procedure, 207

storing values in names, 152

StringElement() function, 96-97

ShowDrillIndicators property, 290

ShowTableStyleColumnHeaders property,

290

ShowTableStyleColumnStripes property,

290

ShowTableStyleLastColumn property, 290

ShowTableStyleRowHeaders property,

290

ShowTableStyleRowStripes property, 290

SimpleFilter() procedure, 285

size

of charts, 204-205

of pivot tables, 299-301

slicers, 319-321

SmartArt, 142

soft edges, formatting, 223-224

SortConcat() function, 97-98

sorter() function, 99-100

sorting

AutoSort, 308

with custom sort orders, 354-355

new features (Excel 2010), 141-142

numeric and alpha characters, 99-100

with SortConcat() function, 97-98

SortUsingCustomLists property, 290

sounds, playing, 543

sparklines

creating, 412-413, 428-432

formatting

RGB colors, 421-423

sparkline elements, 423-426

theme colors, 418-421

Win/Loss charts, 426-427

observations about, 428

scaling, 414-418

types of sparklines, 411

strings

delimited strings, separating, 96-97

finding within text, 100-101

names, 151-152

Styles gallery, 212-213

Sub cbConfirm_Click() procedure, 484-485

subsets of ranges, creating icon sets for,

378-380

substituting multiple characters, 94-95

SubtotalLocation method, 289

subtotals, suppressing for multiple row

fields, 326-327

SumColor() function, 89-90

summarizing records, 485-486

summing cells based on interior color,

89-90

suppressing

Excel warnings, 556

subtotals for multiple row fields,
326-327

SwapElements() procedure, 100

switching to R1C1-style references, 128

T

tab strips, 513-515

TableExists() procedure, 487-488

tables

adding on-the-fly, 489

checking existence of, 487-488

exporting to, 336-337

names, 153

new features (Excel 2010), 141

pivot tables. See pivot tables

referencing, 77-78

TableStyle2 property, 290

tabs

creating for Ribbon, 565-566

tab order for userforms, 530

TabStrip control, 513-515

template chart types, 210-211

Terminate event, 187

testing

macros, 25

speed testing, 350-353

text

case, changing, 359-360

control tip text, 530

formatting cells that contain text, 386

mixed text, sorting numeric and alpha
characters, 99-100

retrieving numbers from mixed text,
95

searching for strings within, 100-101

text boxes, 189

text files

delimited files, opening, 467-470

fixed-width files, opening, 463-467

importing, 463-473

reading and parsing, 332-333

writing, 473-474

text files

delimited files, opening, 467-470

fixed-width files, opening, 463-467

importing

files with fewer than 1,048,576
rows, 463-470

files with more than 1,048,576
rows, 470-473

reading and parsing, 332-333

writing, 473-474

Text Import Wizard, 42, 464-467

Text to Columns Wizard, 43

624 strings

625UDTs (user-defined types)

Type..End Type statement, 506

types, user-defined types (UDTs), 506-509

TypeText method, 444

U

UDFs (user-defined functions)

BookOpen(), 83

case study, 80

ColName(), 103

ContainsText(), 100-101

creating, 79-81

DateTime(), 87

FirstNonZeroLength(), 93

GetAddress(), 102-103

IsEmailValid(), 88-89

LastSaved(), 86-87

MSubstitute(), 94-95

MyFullName(), 82-83

MyName(), 82

NumFilesInCurDir(), 84-85

NumUniqueValues(), 90-91

RetrieveNumbers(), 95

ReturnsMaxs(), 101-102

ReverseContents(), 101

sharing, 81-82

SheetExists(), 83-84

SortConcat(), 97-98

sorter(), 99-100

state_period(), 103

StaticRAND(), 103

StringElement(), 96-97

SumColor(), 89-90

UniqueValues(), 91-92

Weekday(), 96

WinUserName(), 85-86

UDTs (user-defined types), 506-509

TextBox event, 191, 195

TextToColumns method, 471

theme colors for sparklines, 418-421

time

elapsed time, calculating, 353-354

military time, entering into cells, 171

permanent date/time, retrieving, 87

saved date/time, retrieving, 86-87

timers, 542-543

ToggleButton control, 517

toolbars

converting Excel 2003 custom toolbar
to Excel 2010, 575-577

UserForm toolbar, 511

ToolTips, 53

Top 10 cells

filtering to, 319

formatting, 383-384

Top5Customers() procedure, 317-319

Top10Filter() procedure, 252

Top/Bottom Rules, 383-384

TrailingMinusNumbers parameter, 42, 561

training clients about error handling, 557

transparent forms, 533-534

TransposeArray() procedure, 458

transposing data, 345-347

TrapChartEvent() procedure, 497

trapping

application events, 494-495

embedded chart events, 495-497

TrickyFormatting() procedure, 380

troubleshooting. See error handling; error

messages

trusted locations, 10-11

TwoColorGradient() procedure, 221

Union method, 72-73

unique cells, formatting, 384-385

Unique Records Only, 283-285

unique values

counting, 90-91

extracting with Advanced Filter,
258-264

getting unique combinations of
two or more fields, 263-264

with user interface, 259

with VBA code, 260-263

UniqueCustomerProduct() procedure,

263-264

UniqueCustomerRedux() procedure, 261

UniqueProductsOneCustomer() proce-

dure, 266

UniqueValues() function, 91-92

Unload method, 186

Until clause (Do loops), 115-117

updating

records, 483-485

web queries, 395

Use Relative Reference icon (Developer

tab), 9

UseBookmarks() procedure, 448

UseGetObject() procedure, 438

user-defined functions. See UDFs

user-defined types (UDTs), 506-509

UserForm toolbar, 511

UserForm_Initialize() procedure, 527-528

UserForm_QueryClose() procedure, 532

userforms, 183-202

calling, 186

command buttons, 189

controls

adding at runtime, 523-529

adding on-the-fly, 525

CheckBox, 512-513

grouping into collections, 519-521

programming, 188

RefEdit, 515

ScrollBar, 517-519

TabStrip, 513-515

ToggleButton, 517

troubleshooting, 189

creating, 184-185

Debug errors inside userform code,
551-552

disabling X button for closing user-
forms, 541-542

dynamic charts, creating, 244-245

field entry, verifying, 200

filenames, retrieving, 201-202

help, adding, 529-532

accelerator keys, 529

coloring active control, 530-532

control tip text, 530

hiding, 186

hyperlinks in, 522

images

adding on-the-fly, 526-527

graphics events, 195-202

input boxes, 183-184

labels, 189

list boxes, 191-193

message boxes, 184

modeless userforms, 521

MultiPage control, 198-200

option buttons, 194-195

resizing on-the-fly, 524

spin buttons, 196-202

tab order, 530

text boxes, 189

transparent forms, 533-534

UserForm toolbar, 511

626 Union method

627VLOOKUP function

VB Editor, 19-21

converting files to add-ins, 590-591

debugging tools

breakpoints, 49

jumping forward/backward in
code, 49-50

querying variable values, 50-54

Run to Cursor, 50

stepping through code, 46-48

watches, 55

Object Browser, 56-57

Programming window, 23-25

Project Explorer, 20-21

Properties window, 21

settings, 19-20

VBA (Visual Basic for Applications)

advantages of, 8-9

learning curve, 8

syntax, 34-37

VBA Extensibility, 363-365

verbal reminders, scheduling, 402

verifying field entry, 200

Version property, 144-145

versions, errors caused by different ver-

sions, 561

viewing

Developer tab, 9-10

Project Explorer, 20

Properties window, 21

userform code, 186

visible cells, selecting with AutoFilter,

255-256

Visual Basic for Applications. See VBA

(Visual Basic for Applications)

Visual Basic icon (Developer tab), 9

visualizations. See data visualizations

VLOOKUP function, 156-157

viewing code, 186

windows, closing, 200-201

USERID function, 85-86

UserIDs, retrieving, 85-86

V

validating e-mail addresses, 88-89

values

constant values

explained, 439

retrieving with Object Browser,
440-441

retrieving with Watch window,
440

converting pivot tables to, 299-301

duplicates, removing from ranges,
91-92

formatting cells based on, 385

maximum values in range, returning
addresses of, 101-102

storing in names, 152

unique values

counting, 90-91

extracting with Advanced Filter,
258-264

variables

DataSets, 473

hard-coding versus, 60-61

in For statements, 110

object variables, 117-119

querying values of, 50-54

requiring declaration, 20

wdApp, 435

wdDoc, 435

W

warnings, suppressing, 556

Watch window, 440

watches

querying variable values with, 53-54

setting breakpoints, 55

wdApp variable, 435

wdDoc variable, 435

web pages

creating custom, 406

publishing data to, 404-406

web queries, 391-392

building, 396-399

creating manually and refreshing with
VBA, 392-395

scraping, 399

updating, 395

week numbers, converting into dates, 96

Weekday() function, 96

While clause (Do loops), 115-117

While...Wend loops, 117

Window API declarations

Windows API declarations

32-bit versus 64-bit, 538

ahtAddFilterItem, 546

aht_apiGetOpenFileName, 544-546

aht_apiGetSaveFileName, 544-546

calling, 537

DisplaySize, 540

explained, 535-536

finding, 547

FindWindow, 541-543

GetComputerName, 538-539

GetSystemMenu, 541-542

KillTimer, 542-543

lOpen, 539

PlayWavSound, 543

SetTimer, 542-543

ShellAbout, 541

windows for userforms, closing, 200-201

Win/Loss charts, 426-427

WinUserName() function, 85-86

With…End With blocks, 61

wizards, Text Import Wizard, 464-467

Word automation

bookmarks, 448-449

constant values

explained, 439

retrieving with Watch window,
440

controlling form fields, 450-452

creating and referencing objects

CreateObject() function, 438

GetObject() function, 438-439

New keyword, 437

Document object

closing documents, 443

creating documents, 442

explained, 442

opening documents, 442

printing documents, 443

saving documents, 442-443

early binding, 433-436

explained, 433

late binding, 436-437

macro recorder, 441

Range object, 444-447

defining ranges, 444-446

formatting ranges, 446-447

Selection object, 443-444

Word documents, exporting to, 336-337

WordEarlyBinding() procedure, 435

WordLateBinding() procedure, 437

628 warnings, suppressing

629workbooks

workbooks

checking whether open, 83

combining worksheets into, 334-335

converting to add-ins, 588-590

copying macros into, 363-365

counting number of workbooks in
directory, 84-85

events

Workbook_Activate(), 161

Workbook_AddInInstall(), 165

Workbook_AddInUninstall, 165

Workbook_AfterXmlExport(), 166

Workbook_AfterXmlImport(), 166

Workbook_BeforeClose(), 163-
164

Workbook_BeforePrint(), 163

Workbook_BeforeSave(), 162

Workbook_BeforeXmlExport(),
166

Workbook_BeforeXmlImport(),
166

Workbook_Deactivate(), 161

Workbook_NewSheet(), 164

Workbook_Open(), 161

Workbook_
PivotTableCloseConnection(),
165

Workbook_
PivotTableOpenConnection(),
165

Workbook_RowsetComplete(),
165

Workbook_Sync(), 165

Workbook_WindowActivate(),
165

Workbook_WindowDeactivate(),
165

Workbook_WindowResize(), 164

Workbook_Activate() event, 161

Workbook_AddInInstall() event, 165

Workbook_AddInUninstall event, 165

Workbook_AfterXmlExport() event, 166

Workbook_AfterXmlImport() event, 166

Workbook_BeforeClose() event, 163-164

Workbook_BeforePrint() event, 163, 494

Workbook_BeforeSave() event, 162

Workbook_BeforeXmlExport() event, 166

Workbook_BeforeXmlImport() event, 166

Workbook_Deactivate() event, 161

Workbook_NewSheet() event, 164

Workbook_Open() event, 161

Workbook_Open() procedure, 594

Workbook_PivotTableCloseConnection()

event, 165

Workbook_PivotTableOpenConnection()

event, 165

Workbook_RowsetComplete() event, 165

Workbook_SheetActivate() event, 166

Workbook_SheetBeforeDoubleClick()

event, 167

Workbook_SheetBeforeRightClick() event,

167

Workbook_SheetCalculate() event, 167

Workbook_SheetChange () event, 167

Workbook_SheetDeactivate() event, 167

Workbook_SheetFollowHyperlink() event,

167

Workbook_SheetPivotTableUpdate()

event, 167

Workbook_SheetSelectionChange() event,

167

Workbook_Sync() event, 165

Workbook_WindowActivate() event, 165

Workbook_WindowDeactivate() event,

165

Workbook_WindowResize() event, 164

hidden workbooks

as alternative to add-ins, 593-594

case study: hidden workbook to
hold macros and forms, 594

permanent date/time, retrieving, 87

saved date/time, retrieving, 86-87

separating worksheets into, 333-334

Workbooks object, 40

Worksheet_Activate() event, 168

Worksheet_BeforeDoubleClick() event,

168

Worksheet_BeforeRightClick() event, 169

Worksheet_BeforeRightClick() procedure,

160

Worksheet_Calculate() event, 169

Worksheet_Change() event, 170

Worksheet_Change() procedure, 161

Worksheet_Deactivate() event, 168

Worksheet_FollowHyperlink() event, 171

Worksheet_PivotTableUpdate() event, 172

Worksheet_SelectionChange() event, 170

worksheets

combining into workbooks, 334-335

events, 168-172

filtering/copying data into, 335-336

referencing ranges in other sheets, 67

Select...Case statements on, 104

separating into workbooks, 333-334

WriteFile() procedure, 474

WriteHTML() procedure, 554

writing text files, 473-474

Wrong Number of Arguments or Invalid

Property Assignment (error message),

580

630 workbooks

X-Y-Z

X button, disabling, 541-542

xlApp_NewWorkbook() procedure, 495

XLFilterInPlace constant, 275

.xls file type, 18

.xlsb file type, 18

.xlsm file type, 18

.xlsx file type, 18

Zoom event, 187, 195, 200

	Cover page
	Contents
	1 Unleash the Power of Excel with VBA
	The Power of Excel
	Barriers to Entry
	The Macro Recorder Doesn’t Work!
	Visual Basic Is Not Like BASIC
	Good News: Climbing the Learning Curve Is Easy
	Great News: Excel with VBA Is Worth the Effort

	Knowing Your Tools: The Developer Tab
	Macro Security
	Adding a Trusted Location
	Using Macro Settings to Enable Macros in Workbooks Outside of Trusted Locations
	Using Disable All Macros with Notification

	Overview of Recording, Storing, and Running a Macro
	Filling Out the Record Macro Dialog

	Running a Macro
	Creating a Macro Button on the Ribbon
	Creating a Macro Button on the Quick Access Toolbar
	Assigning a Macro to a Form Control, Text Box, or Shape

	Using New File Types in Excel 2010
	Understanding the VB Editor
	VB Editor Settings
	The Project Explorer
	The Properties Window

	Understanding Shortcomings of the Macro Recorder
	Examining Code in the Programming Window
	Running the Macro on Another Day Produces Undesired Results
	Possible Solution: Use Relative References When Recording
	Never Use the AutoSum Button While Recording a Macro
	Three Tips When Using the Macro Recorder

	2 This Sounds Like BASIC, So Why Doesn’t It Look Familiar?
	I Can’t Understand This Code
	Understanding the Parts of VBA “Speech”
	VBA Is Not Really Hard
	VBA Help Files: Using F1 to Find Anything
	Using Help Topics

	Examining Recorded Macro Code: Using the VB Editor and Help
	Optional Parameters
	Defined Constants
	Properties Can Return Objects

	Using Debugging Tools to Figure Out Recorded Code
	Stepping Through Code
	More Debugging Options: Breakpoints
	Backing Up or Moving Forward in Code
	Not Stepping Through Each Line of Code
	Querying Anything While Stepping Through Code
	Using a Watch to Set a Breakpoint
	Using a Watch on an Object

	Object Browser: The Ultimate Reference
	Seven Tips for Cleaning Up Recorded Code
	Tip 1: Don’t Select Anything
	Tip 2: Cells(2,5) Is More Convenient Than Range(“E2”)
	Tip 3: Ride the Range from the Bottom to Find Last Row
	Tip 4: Use Variables to Avoid Hard-Coding Rows and Formulas
	Tip 5: R1C1 Formulas That Make Your Life Easier
	Tip 6: Learn to Copy and Paste in a Single Statement
	Tip 7: Use With...End With to Perform Multiple Actions

	Next Steps

	3 Referring to Ranges
	The Range Object
	Syntax to Specify a Range
	Named Ranges
	Shortcut for Referencing Ranges
	Referencing Ranges in Other Sheets
	Referencing a Range Relative to Another Range
	Use the Cells Property to Select a Range
	Using the Cells Property in the Range Property

	Use the Offset Property to Refer to a Range
	Use the Resize Property to Change the Size of a Range
	Using the Columns and Rows Properties to Specify a Range
	Use the Union Method to Join Multiple Ranges
	Use the Intersect Method to Create a New Range from Overlapping Ranges
	Use the ISEMPTY Function to Check Whether a Cell Is Empty
	Use the CurrentRegion Property to Select a Data Range
	Use the Areas Collection to Return a Noncontiguous Range
	Referencing Tables
	Next Steps

	4 User-Defined Functions
	Creating User-Defined Functions
	Sharing UDFs
	Useful Custom Excel Functions
	Set the Current Workbook’s Name in a Cell
	Set the Current Workbook’s Name and File Path in a Cell
	Check Whether a Workbook Is Open
	Check Whether a Sheet in an Open Workbook Exists
	Count the Number of Workbooks in a Directory
	Retrieve USERID
	Retrieve Date and Time of Last Save
	Retrieve Permanent Date and Time
	Validate an E-mail Address
	Sum Cells Based on Interior Color
	Count Unique Values
	Remove Duplicates from a Range
	Find the First Nonzero-Length Cell in a Range
	Substitute Multiple Characters
	Retrieve Numbers from Mixed Text
	Convert Week Number into Date
	Separate Delimited String
	Sort and Concatenate
	Sort Numeric and Alpha Characters
	Search for a String Within Text
	Reverse the Contents of a Cell
	Multiple Max
	Return Hyperlink Address
	Return the Column Letter of a Cell Address
	Static Random
	Using Select Case on a Worksheet

	5 Looping and Flow Control
	For…Next Loops
	Using Variables in the For Statement
	Variations on the For...Next Loop
	Exiting a Loop Early After a Condition Is Met
	Nesting One Loop Inside Another Loop

	Do Loops
	Using the While or Until Clause in Do Loops
	While...Wend Loops

	VBA Loop: For Each
	Object Variables

	Flow Control: Using If...Then...Else and Select Case
	Basic Flow Control: If...Then...Else
	Conditions
	If...Then...End If
	Either/Or Decisions: If...Then...Else...End If
	Using If...Else If...End If for Multiple Conditions
	Using Select Case...End Select for Multiple Conditions
	Complex Expressions in Case Statements
	Nesting If Statements

	Next Steps

	6 R1C1-Style Formulas
	Referring to Cells: A1 Versus R1C1 References
	Switching Excel to Display R1C1-Style References
	The Miracle of Excel Formulas
	Enter a Formula Once and Copy 1,000 Times
	The Secret: It’s Not That Amazing

	Explanation of R1C1 Reference Style
	Using R1C1 with Relative Reference
	Using R1C1 with Absolute References
	Using R1C1 with Mixed References
	Referring to Entire Columns or Rows with R1C1 Style
	Replacing Many A1 Formulas with a Single R1C1 Formula
	Remembering Column Numbers Associated with Column Letters

	Array Formulas Require R1C1 Formulas
	Next Steps

	7 What Is New in Excel 2010 and What Has Changed
	If It Has Changed in the Front End, It Has Changed in VBA
	The Ribbon
	Charts
	Pivot Tables
	Slicers
	Conditional Formatting
	Tables
	Sorting
	SmartArt

	Learning the New Objects and Methods
	Compatibility Mode
	Version
	Excel8CompatibilityMode

	Next Steps

	8 Create and Manipulate Names in VBA
	Excel Names
	Global Versus Local Names
	Adding Names
	Deleting Names
	Adding Comments
	Types of Names
	Formulas
	Strings
	Numbers
	Tables
	Using Arrays in Names
	Reserved Names

	Hiding Names
	Checking for the Existence of a Name

	9 Event Programming
	Levels of Events
	Using Events
	Event Parameters
	Enabling Events

	Workbook Events
	Workbook_Activate()
	Workbook_Deactivate()
	Workbook_Open()
	Workbook_BeforeSave(ByVal SaveAsUI As Boolean, Cancel As Boolean)
	Workbook_BeforePrint(Cancel As Boolean)
	Workbook_BeforeClose(Cancel As Boolean)
	Workbook_NewSheet(ByVal Sh As Object)
	Workbook_WindowResize(ByVal Wn As Window)
	Workbook_WindowActivate(ByVal Wn As Window)
	Workbook_WindowDeactivate(ByVal Wn As Window)
	Workbook_AddInInstall()
	Workbook_AddInUninstall
	Workbook_Sync(ByVal SyncEventType As Office.MsoSyncEventType)
	Workbook_PivotTableCloseConnection(ByVal Target As PivotTable)
	Workbook_PivotTableOpenConnection(ByVal Target As PivotTable)
	Workbook_RowsetComplete(ByVal Description As String, ByVal Sheet As String, ByVal Success As Boolean)
	Workbook_BeforeXmlExport(ByVal Map As XmlMap, ByVal Url As String, Cancel As Boolean)
	Workbook_AfterXmlExport(ByVal Map As XmlMap, ByVal Url As String, ByVal Result As XlXmlExportResult)
	Workbook_BeforeXmlImport(ByVal Map As XmlMap, ByVal Url As String, ByVal IsRefresh As Boolean, Cancel As Boolean)
	Workbook_AfterXmlImport(ByVal Map As XmlMap, ByVal IsRefresh As Boolean, ByVal Result As XlXmlImportResult)
	Workbook Level Sheet and Chart Events

	Worksheet Events
	Worksheet_Activate()
	Worksheet_Deactivate()
	Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As Boolean)
	Worksheet_BeforeRightClick(ByVal Target As Range, Cancel As Boolean)
	Worksheet_Calculate()
	Worksheet_Change(ByVal Target As Range)
	Worksheet_SelectionChange(ByVal Target As Range)
	Worksheet_FollowHyperlink(ByVal Target As Hyperlink)
	Worksheet_PivotTableUpdate(ByVal Target As PivotTable)

	Chart Sheet Events
	Embedded Charts
	Chart_Activate()
	Chart_BeforeDoubleClick(ByVal ElementID As Long, ByVal Arg1 As Long, ByVal Arg2 As Long, Cancel As Boolean)
	Chart_BeforeRightClick(Cancel As Boolean)
	Chart_Calculate()
	Chart_Deactivate()
	Chart_MouseDown(ByVal Button As Long, ByVal Shift As Long, ByVal x As Long, ByVal y As Long)
	Chart_MouseMove(ByVal Button As Long, ByVal Shift As Long, ByVal x As Long, ByVal y As Long)
	Chart_MouseUp(ByVal Button As Long, ByVal Shift As Long, ByVal x As Long, ByVal y As Long)
	Chart_Resize()
	Chart_Select(ByVal ElementID As Long, ByVal Arg1 As Long, ByVal Arg2 As Long)
	Chart_SeriesChange(ByVal SeriesIndex As Long, ByVal PointIndex As Long)
	Chart_DragOver()
	Chart_DragPlot()

	Application-Level Events
	AppEvent_AfterCalculate()
	AppEvent_NewWorkbook(ByVal Wb As Workbook)
	AppEvent_ProtectedViewWindowActivate(ByVal Pvw As ProtectedViewWindow)
	AppEvent_ProtectedViewWindowBeforeClose(ByVal Pvw As ProtectedViewWindow, ByVal Reason As XlProtectedViewCloseReason, Cancel As Boolean)
	AppEvent_ProtectedViewWindowDeactivate(ByVal Pvw As ProtectedViewWindow)
	AppEvent_ProtectedViewWindowOpen(ByVal Pvw As ProtectedViewWindow)
	AppEvent_ProtectedViewWindowResize(ByVal Pvw As ProtectedViewWindow)
	AppEvent_SheetActivate (ByVal Sh As Object)
	AppEvent_SheetBeforeDoubleClick(ByVal Sh As Object, ByVal Target As Range, Cancel As Boolean)
	AppEvent_SheetBeforeRightClick(ByVal Sh As Object, ByVal Target As Range, Cancel As Boolean)
	AppEvent_SheetCalculate(ByVal Sh As Object)
	AppEvent_SheetChange(ByVal Sh As Object, ByVal Target As Range)
	AppEvent_SheetDeactivate(ByVal Sh As Object)
	AppEvent_SheetFollowHyperlink(ByVal Sh As Object, ByVal Target As Hyperlink)
	AppEvent_SheetSelectionChange(ByVal Sh As Object, ByVal Target As Range)
	AppEvent_SheetPivotTableUpdate(ByVal Sh As Object, ByVal Target As PivotTable)
	AppEvent_WindowActivate(ByVal Wb As Workbook, ByVal Wn As Window)
	AppEvent_WindowDeactivate(ByVal Wb As Workbook, ByVal Wn As Window)
	AppEvent_WindowResize(ByVal Wb As Workbook, ByVal Wn As Window)
	AppEvent_WorkbookActivate(ByVal Wb As Workbook)
	AppEvent_WorkbookAddinInstall(ByVal Wb As Workbook)
	AppEvent_WorkbookAddinUninstall(ByVal Wb As Workbook)
	AppEvent_WorkbookBeforeClose(ByVal Wb As Workbook, Cancel As Boolean)
	AppEvent_WorkbookBeforePrint(ByVal Wb As Workbook, Cancel As Boolean)
	AppEvent_WorkbookBeforeSave(ByVal Wb As Workbook, ByVal SaveAsUI As Boolean, Cancel As Boolean)
	AppEvent_WorkbookNewSheet(ByVal Wb As Workbook, ByVal Sh As Object)
	AppEvent_WorkbookOpen(ByVal Wb As Workbook)
	AppEvent_WorkbookPivotTableCloseConnection(ByVal Wb As Workbook, ByVal Target As PivotTable)
	AppEvent_WorkbookPivotTableOpenConnection(ByVal Wb As Workbook, ByVal Target As PivotTable)
	AppEvent_WorkbookRowsetComplete(ByVal Wb As Workbook, ByVal Description As String, ByVal Sheet As String, ByVal Success As Boolean)
	AppEvent_WorkbookSync(ByVal Wb As Workbook, ByVal SyncEventType As Office.MsoSyncEvenType
	AppEvent_WorkbookBeforeXmlExport(ByVal Wb As Workbook, ByVal Map As XmlMap, ByVal Url As String, Cancel As Boolean)
	AppEvent_WorkbookAfterXmlExport(ByVal Wb As Workbook, ByVal Map As XmlMap, ByVal Url As String, ByVal Result As XlXmlExportResult)
	AppEvent_WorkbookBeforeXmlImport(ByVal Wb As Workbook, ByVal Map As XmlMap, ByVal Url As String, ByVal IsRefresh As Boolean, Cancel As Boolean)
	AppEvent_WorkbookAfterXmlImport(ByVal Wb As Workbook, ByVal Map As XmlMap, ByVal IsRefresh As Boolean, ByVal Result As XlXmlImportResult)

	10 Userforms: An Introduction
	User Interaction Methods
	Input Boxes
	Message Boxes

	Creating a Userform
	Calling and Hiding a Userform
	Programming the Userform
	Userform Events

	Programming Controls
	Using Basic Form Controls
	Using Labels, Text Boxes, and Command Buttons
	Deciding Whether to Use List Boxes or Combo Boxes in Forms
	Adding Option Buttons to a Userform
	Adding Graphics to a Userform
	Using a Spin Button on a Userform
	Using the MultiPage Control to Combine Forms

	Verifying Field Entry
	Illegal Window Closing
	Getting a Filename
	Next Steps

	11 Creating Charts
	Charting in Excel 2010
	Referencing Charts and Chart Objects in VBA Code
	Creating a Chart
	Specifying the Size and Location of a Chart
	Later Referring to a Specific Chart

	Recording Commands from the Layout or Design Tabs
	Specifying a Built-in Chart Type
	Specifying a Template Chart Type
	Changing a Chart’s Layout or Style

	Using SetElement to Emulate Changes on the Layout Tab
	Changing a Chart Title Using VBA
	Emulating Changes on the Format Tab
	Using the Format Method to Access Formatting Options

	Creating Advanced Charts
	Creating True Open-High-Low-Close Stock Charts
	Creating Bins for a Frequency Chart
	Creating a Stacked Area Chart

	Exporting a Chart as a Graphic
	Creating a Dynamic Chart in a Userform

	Creating Pivot Charts
	Next Steps

	12 Data Mining with Advanced Filter
	Replacing a Loop with AutoFilter
	Using New AutoFilter Techniques
	Selecting Visible Cells Only

	Advanced Filter Is Easier in VBA Than in Excel
	Using the Excel Interface to Build an Advanced Filter

	Using Advanced Filter to Extract a Unique List of Values
	Extracting a Unique List of Values with the User Interface
	Extracting a Unique List of Values with VBA Code
	Getting Unique Combinations of Two or More Fields

	Using Advanced Filter with Criteria Ranges
	Joining Multiple Criteria with a Logical OR
	Joining Two Criteria with a Logical AND
	Other Slightly Complex Criteria Ranges
	The Most Complex Criteria: Replacing the List of Values with a Condition Created as the Result of a Formula

	Using Filter in Place in Advanced Filter
	Catching No Records When Using Filter in Place
	Showing All Records After Filter in Place

	The Real Workhorse: xlFilterCopy with All Records Rather Than Unique Records Only
	Copying All Columns
	Copying a Subset of Columns and Reordering

	Using Filter in Place with Unique Records Only
	Excel in Practice: Turning Off a Few Drop-Downs in the AutoFilter

	Next Steps

	13 Using VBA to Create Pivot Tables
	Introducing Pivot Tables
	Understanding Versions
	New in Excel 2010
	New Beginning with Excel 2007

	Creating a Vanilla Pivot Table in the Excel Interface
	Understanding Compact Layout

	Building a Pivot Table in Excel VBA
	Defining the Pivot Cache
	Creating and Configuring the Pivot Table
	Adding Fields to the Data Area
	Learning Why You Cannot Move or Change Part of a Pivot Report
	Determining Size of a Finished Pivot Table to Convert the Pivot Table to Values

	Using Advanced Pivot Table Features
	Using Multiple Value Fields
	Counting the Number of Records
	Grouping Daily Dates to Months, Quarters, or Years
	Changing the Calculation to Show Percentages
	Eliminating Blank Cells in the Values Area
	Controlling the Sort Order with AutoSort
	Replicating the Report for Every Product

	Filtering a Data Set
	Manually Filtering Two or More Items in a Pivot Field
	Using the Conceptual Filters
	Using the Search Filter
	Setting Up Slicers to Filter a Pivot Table
	Filtering an OLAP Pivot Table Using Named Sets

	Using Other Pivot Table Features
	Calculated Data Fields
	Calculated Items
	Using ShowDetail to Filter a Recordset
	Changing the Layout from the Design Tab
	Suppressing Subtotals for Multiple Row Fields

	Next Steps

	14 Excel Power
	File Operations
	List Files in a Directory
	Import CSV
	Read Entire TXT to Memory and Parse

	Combining and Separating Workbooks
	Separate Worksheets into Workbooks
	Combine Workbooks
	Filter and Copy Data to Separate Worksheets
	Export Data to Word

	Working with Cell Comments
	List Comments
	Resize Comments
	Resize Comments with Centering
	Place a Chart in a Comment

	Utilities to Wow Your Clients
	Using Conditional Formatting to Highlight Selected Cell
	Highlight Selected Cell Without Using Conditional Formatting
	Custom Transpose Data
	Select/Deselect Noncontiguous Cells

	Techniques for VBA Pros
	Pivot Table Drill-Down
	Speedy Page Setup
	Calculating Time to Execute Code
	Custom Sort Order
	Cell Progress Indicator
	Protected Password Box
	Change Case
	Selecting with SpecialCells
	ActiveX Right-Click Menu

	Cool Applications
	Historical Stock/Fund Quotes
	Using VBA Extensibility to Add Code to New Workbooks

	Next Steps

	15 Data Visualizations and Conditional Formatting
	Introduction to Data Visualizations
	VBA Methods and Properties for Data Visualizations
	Adding Data Bars to a Range
	Adding Color Scales to a Range
	Adding Icon Sets to a Range
	Specifying an Icon Set
	Specifying Ranges for Each Icon

	Using Visualization Tricks
	Creating an Icon Set for a Subset of a Range
	Using Two Colors of Data Bars in a Range

	Using Other Conditional Formatting Methods
	Formatting Cells That Are Above or Below Average
	Formatting Cells in the Top 10 or Bottom 5
	Formatting Unique or Duplicate Cells
	Formatting Cells Based on Their Value
	Formatting Cells That Contain Text
	Formatting Cells That Contain Dates
	Formatting Cells That Contain Blanks or Errors
	Using a Formula to Determine Which Cells to Format
	Using the New NumberFormat Property

	Next Steps

	16 Reading from and Writing to the Web
	Getting Data from the Web
	Manually Creating a Web Query and Refreshing with VBA
	Using VBA to Update an Existing Web Query
	Building Many Web Queries with VBA

	Using Application.OnTime to Periodically Analyze Data
	Scheduled Procedures Require Ready Mode
	Specifying a Window of Time for an Update
	Canceling a Previously Scheduled Macro
	Closing Excel Cancels All Pending Scheduled Macros
	Scheduling a Macro to Run x Minutes in the Future
	Scheduling a Verbal Reminder
	Scheduling a Macro to Run Every 2 Minutes

	Publishing Data to a Web Page
	Using VBA to Create Custom Web Pages
	Using Excel as a Content Management System
	Bonus: FTP from Excel

	Next Steps

	17 Dashboarding with Sparklines in Excel 2010
	Creating Sparklines
	Scaling the Sparklines
	Formatting Sparklines
	Using Theme Colors
	Using RGB Colors
	Formatting Sparkline Elements
	Formatting Win/Loss Charts

	Creating a Dashboard
	Observations About Sparklines
	Creating 100’s of Individual Sparklines in a Dashboard

	Next Steps

	18 Automating Word
	Early Binding
	Compile Error: Can’t Find Object or Library

	Late Binding
	Creating and Referencing Objects
	The New Keyword
	CreateObject Function
	GetObject Function

	Using Constant Values
	Using the Watch Window to Retrieve the Real Value of a Constant
	Using the Object Browser to Retrieve the Real Value of a Constant

	Understanding Word’s Objects
	Document Object
	Selection Object
	Range Object
	Bookmarks

	Controlling Form Fields in Word
	Next Steps

	19 Arrays
	Declare an Array
	Multidimensional Arrays

	Fill an Array
	Empty an Array
	Arrays Make It Easier to Manipulate Data, but Is That All?
	Dynamic Arrays
	Passing an Array

	20 Text File Processing
	Importing from Text Files
	Importing Text Files with Fewer Than 1,048,576 Rows
	Reading Text Files with More Than 1,048,576 Rows

	Writing Text Files
	Next Steps

	21 Using Access as a Back End to Enhance Multiuser Access to Data
	ADO Versus DAO
	The Tools of ADO
	Adding a Record to the Database
	Retrieving Records from the Database
	Updating an Existing Record
	Deleting Records via ADO
	Summarizing Records via ADO
	Other Utilities via ADO
	Checking for the Existence of Tables
	Checking for the Existence of a Field
	Adding a Table On the Fly
	Adding a Field On the Fly

	SQL Server Examples
	Next Steps

	22 Creating Classes, Records, and Collections
	Inserting a Class Module
	Trapping Application and Embedded Chart Events
	Application Events
	Embedded Chart Events

	Creating a Custom Object
	Using a Custom Object
	Using Property Let and Property Get to Control How Users Utilize Custom Objects
	Collections
	Creating a Collection in a Standard Module
	Creating a Collection in a Class Module

	User-Defined Types
	Next Steps

	23 Advanced Userform Techniques
	Using the UserForm Toolbar in the Design of Controls on Userforms
	More Userform Controls
	Check Boxes
	Tab Strips
	RefEdit
	Toggle Buttons
	Using a Scrollbar As a Slider to Select Values

	Controls and Collections
	Modeless Userforms
	Using Hyperlinks in Userforms
	Adding Controls at Runtime
	Resizing the Userform On-the-fly
	Adding a Control On-the-fly
	Sizing On-the-fly
	Adding Other Controls
	Adding an Image On-the-fly
	Putting It All Together

	Adding Help to the Userform
	Showing Accelerator Keys
	Adding Control Tip Text
	Creating the Tab Order
	Coloring the Active Control

	Transparent Forms
	Next Steps

	24 Windows API
	What Is the Windows API?
	Understanding an API Declaration
	Using an API Declaration
	API Examples
	Retrieve the Computer Name
	Check Whether an Excel File Is Open on a Network
	Retrieve Display-Resolution Information
	Custom About Dialog
	Disable the X for Closing a Userform
	Running Timer
	Playing Sounds
	Retrieving a File Path

	Finding More API Declarations
	Next Steps

	25 Handling Errors
	What Happens When an Error Occurs?
	Debug Error Inside Userform Code Is Misleading

	Basic Error Handling with the On Error GoTo Syntax
	Generic Error Handlers
	Handling Errors by Choosing to Ignore Them
	Suppressing Excel Warnings
	Encountering Errors on Purpose

	Train Your Clients
	Errors While Developing Versus Errors Months Later
	Runtime Error 9: Subscript Out of Range
	RunTime Error 1004: Method Range of Object Global Failed

	The Ills of Protecting Code
	More Problems with Passwords
	Errors Caused by Different Versions

	26 Customizing the Ribbon to Run Macros
	Out with the Old, In with the New
	Where to Add Your Code: customui Folder and File

	Creating the Tab and Group
	Adding a Control to Your Ribbon
	Accessing the File Structure
	Understanding the RELS File
	Renaming the Excel File and Opening the Workbook
	Custom UI Editor Tool

	Using Images on Buttons
	Microsoft Office Icons
	Custom Icon Images

	Troubleshooting Error Messages
	The Attribute “Attribute Name” on the Element “customui Ribbon” Is Not Defined in the DTD/Schema
	Illegal Qualified Name Character
	Element “customui Tag Name” Is Unexpected According to Content Model of Parent Element “customui Tag Name”
	Excel Found Unreadable Content
	Wrong Number of Arguments or Invalid Property Assignment
	Nothing Happens

	Other Ways to Run a Macro
	Keyboard Shortcut
	Attach a Macro to a Command Button
	Attach a Macro to a Shape
	Attach a Macro to an ActiveX Control
	Running a Macro from a Hyperlink

	Next Steps

	27 Creating Add-Ins
	Characteristics of Standard Add-Ins
	Converting an Excel Workbook to an Add-In
	Using Save As to Convert a File to an Add-In
	Using the VB Editor to Convert a File to an Add-In

	Having Your Client Install the Add-In
	Standard Add-Ins Are Not Secure
	Closing Add-Ins
	Removing Add-Ins

	Using a Hidden Workbook as an Alternative to an Add-In

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

